Advertisement

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid)–polymer composites as functional cathode binders for high power LiFePO4 batteries

  • Aleksei V. Kubarkov
  • Oleg A. Drozhzhin
  • Evgeny A. Karpushkin
  • Keith J. Stevenson
  • Evgeny V. Antipov
  • Vladimir G. Sergeyev
Invited Article
  • 10 Downloads

Abstract

Electroactive conductive composites based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) and co-binding polymers—poly(ethylene oxide) (PEO) or sulfonated poly(phenylene oxide) (SPPO)—have been evaluated as conductive binders for LiFePO4 cathodes in Li-ion batteries. We have demonstrated that PEDOT:PSS–PEO and PEDOT:PSS–SPPO facilitated charge transfer for high rate application (discharge capacity up to 115 mAh g−1 at 3C). The thicker cathodes containing extra high loading of commercial LiFePO4/C (95 wt%, 19 mg cm−2) have exhibited specific capacity of up to 120 mAh g−1 and areal capacity of up to 2 mAh cm−2 at 1C, several times higher as compared to the earlier reported LiFePO4/PEDOT cathodes. While the application of PEO in PEDOT:PSS composites is restricted to sulfolane-based electrolytes due to solubility limitations, the PEDOT:PSS–SPPO-based cathodes can be used with conventional carbonate electrolytes, showing good stability and cyclability.

Keywords

Battery materials Charge transport Composites Polymer blends Cathode binder Conducting polymers Areal capacity 

Notes

Acknowledgments

The authors are grateful to Andrey Chekannikov and Nataliya Gvozdik for Raman microscopic imaging. Research reported in this publication was done in collaboration with Center for Electrochemical Energy Storage of Skolkovo Institute of Science and Technology and Lomonosov Moscow State University Program of Development.

Funding information

The authors acknowledge financial support from the Russian Science Foundation (project N 17-73-30006).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

Supplementary material

396_2018_4468_MOESM1_ESM.docx (227 kb)
ESM 1 (DOCX 226 kb)

References

  1. 1.
    Zaghib K, Guerfi A, Hovington P, Vijh A, Trudeau M, Mauger A, Goodenough JB, Julien CM (2013) Review and analysis of nanostructured olivine-based lithium recheargeable batteries: status and trends. J Power Sources 232:357–369.  https://doi.org/10.1016/j.jpowsour.2012.12.095 CrossRefGoogle Scholar
  2. 2.
    Diouf B, Pode R (2015) Potential of lithium-ion batteries in renewable energy. Renew Energy 76:375–380.  https://doi.org/10.1016/j.renene.2014.11.058 CrossRefGoogle Scholar
  3. 3.
    Porcher W, Lestriez B, Jouanneau S, Guyomard D (2009) Design of aqueous processed thick LiFePO4 composite electrodes for high-energy lithium battery. J Electrochem Soc 156:A133–A144.  https://doi.org/10.1149/1.3046129 CrossRefGoogle Scholar
  4. 4.
    Levin OV, Eliseeva SN, Alekseeva EV, Tolstopjatova EG, Kondratiev VV (2015) Composite LiFePO4/poly-3,4-ethylenedioxythiophene cathode for lithium-ion batteries with low content of non-electroactive components. Int J Electrochem Sci 10:8175–8189Google Scholar
  5. 5.
    Arbizzani C, Beninati S, Mastragostino M (2010) A three-dimensional carbon-coated LiFePO4 electrode for high-power applications. J Appl Electrochem 40:7–11.  https://doi.org/10.1007/s10800-009-9956-5 CrossRefGoogle Scholar
  6. 6.
    Zheng H, Yang R, Liu G, Song X, Battaglia VS (2012) Cooperation between active material, polymeric binder and conductive carbon additive in lithium ion battery cathode. J Phys Chem C 116:4875–4882.  https://doi.org/10.1021/jp208428w CrossRefGoogle Scholar
  7. 7.
    Yu DYW, Donoue K, Inoue T, Fujimoto M, Fujitani S (2006) Effect of electrode parameters on LiFePO4 cathodes. J Electrochem Soc 153:A835–A839.  https://doi.org/10.1149/1.2179199 CrossRefGoogle Scholar
  8. 8.
    Das PR, Komsiyska L, Osters O, Wittstock G (2015) PEDOT:PSS as a functional binder for cathodes in lithium ion batteries. J Electrochem Soc 162:A674–A678.  https://doi.org/10.1149/2.0581504jes CrossRefGoogle Scholar
  9. 9.
    Eliseeva SN, Apraksin RV, Tolstopjatova EG, Kondratiev VV (2017) Electrochemical impedance spectroscopy characterization of LiFePO4 cathode material with carboxymethylcellulose and poly-3,4-ethylendioxythiophene/polystyrene sulfonate. Electrochim Acta 227:357–366.  https://doi.org/10.1016/j.electacta.2016.12.157 CrossRefGoogle Scholar
  10. 10.
    Vicente N, Haro M, Cíntora-Juárez D, Pérez-Vicente C, Tirado JL, Shahzada A, Garcia-Belmonte G (2015) LiFePO4 particle conductive composite strategies for improving cathode rate capability. Electrochim Acta 163:323–329.  https://doi.org/10.1016/j.electacta.2015.02.148 CrossRefGoogle Scholar
  11. 11.
    Cíntora-Juárez D, Pérez-Vicente C, Kazim S, Ahmad S, Tirado JL (2015) Judicious design of lithium iron phosphate electrodes using poly(3,4-ethylenedioxythiophene) for high performance batteries. J Mater Chem A 3:14254–14262.  https://doi.org/10.1039/C5TA03542B CrossRefGoogle Scholar
  12. 12.
    Das PR, Komsiyska L, Osters O, Wittstock G (2015) Electrochemical stability of PEDOT:PSS as cathodic binder for Li-ion batteries. ECS Trans 68:45–58.  https://doi.org/10.1149/06802.0045ecst CrossRefGoogle Scholar
  13. 13.
    Sun M, Zhong H, Jiao S, Shao H, Zhang L (2014) Investigation on carboxymethyl chitosan as new water soluble binder for LiFePO4 cathode in Li-ion batteries. Electrochim Acta 127:239–244.  https://doi.org/10.1016/j.electacta.2014.02.027 CrossRefGoogle Scholar
  14. 14.
    Li J, Armstrong BL, Kiggans J, Daniel C, Wood DL (2012) Lithium ion cell performance enhancement using aqueous LiFePO4 cathode dispersions and polyethyleneimine dispersant. J Electrochem Soc 160:A201–A206.  https://doi.org/10.1149/2.037302jes CrossRefGoogle Scholar
  15. 15.
    Pan J, Xu G, Ding B, Chang Z, Wang A, Dou H, Zhang X (2016) PAA/PEDOT:PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium–sulfur batteries. RSC Adv 6:40650–40655.  https://doi.org/10.1039/C6RA04230A CrossRefGoogle Scholar
  16. 16.
    Apraksin RV, Eliseeva SN, Tolstopjatova EG, Rumyantsev AM, Zhdanov VV, Kondratiev VV (2016) High-rate performance of LiFe0.4Mn0.6PO4 cathode materials with poly(3,4-ethylenedioxythiopene):poly(styrene sulfonate)/carboxymethylcellulose. Mater Lett 176:248–252.  https://doi.org/10.1016/j.matlet.2016.04.106 CrossRefGoogle Scholar
  17. 17.
    Eliseeva SN, Levin OV, Tolstopjatova EG, Alekseeva EV, Apraksin RV, Kondratiev VV (2015) New functional conducting poly-3,4-ethylenedioxythiopene:polystyrene sulfonate/carboxymethylcellulose binder for improvement of capacity of LiFePO4-based cathode materials. Mater Lett 161:117–119.  https://doi.org/10.1016/j.matlet.2015.08.078 CrossRefGoogle Scholar
  18. 18.
    Shao D, Zhong H, Zhang L (2014) Water-soluble conductive composite binder containing PEDOT:PSS as conduction promoting agent for Si anode of lithium-ion batteries. ChemElectroChem 1:1679–1687.  https://doi.org/10.1002/celc.201402210 CrossRefGoogle Scholar
  19. 19.
    Liu J, Davis NR, Liu DS, Hammond PT (2012) Highly transparent mixed electron and proton conducting polymer membranes. J Mater Chem 22:15534.  https://doi.org/10.1039/c2jm32296j CrossRefGoogle Scholar
  20. 20.
    Wang CQ, Huang YH, Liao B, Zhao SL, Lin G, Cong GM (1996) Effects of the conductivity of sulfonated poly(phenylene oxide) lithium by the complexation of poly(ethylene oxide). Polym Adv Technol 7:697–700.  https://doi.org/10.1002/(SICI)1099-1581(199608)7:8<697::AID-PAT568>3.0.CO;2-M CrossRefGoogle Scholar
  21. 21.
    Li P, Sun K, Ouyang J (2015) Stretchable and conductive polymer films prepared by solution blending. ACS Appl Mater Interfaces 7:18415–18423.  https://doi.org/10.1021/acsami.5b04492 CrossRefGoogle Scholar
  22. 22.
    Barrales-Rienda JM, Pepper DC (1966) Intrinsic viscosities and dimensions of poly(phenylene oxide). J Polym Sci B Polym Lett 4:939–941.  https://doi.org/10.1002/pol.1966.110041203 CrossRefGoogle Scholar
  23. 23.
    Belharouak I, Johnson C, Amine K (2005) Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4. Electrochem Commun 7:983–988.  https://doi.org/10.1016/j.elecom.2005.06.019 CrossRefGoogle Scholar
  24. 24.
    Huang RYM, Kim JJ (1984) Synthesis and transport properties of thin film composite membranes. I. Synthesis of poly(phenylene oxide) polymer and its sulfonation. J Appl Polym Sci 29:4017–4402.  https://doi.org/10.1002/app.1984.070291234 CrossRefGoogle Scholar
  25. 25.
    McDonald MB, Hammond PT (2018) Efficient transport networks in a dual electron/lithium-conducting polymeric composite for electrochemical applications. ACS Appl Mater Interfaces 10:15681–15690.  https://doi.org/10.1021/acsami.8b01519 CrossRefGoogle Scholar
  26. 26.
    Alemu Mengistie D, Wang P-C, Chu C-W (2013) Effect of molecular weight of additives on the conductivity of PEDOT:PSS and efficiency for ITO-free organic solar cells. J Mater Chem A 1:9907–9915.  https://doi.org/10.1039/c3ta11726j CrossRefGoogle Scholar
  27. 27.
    Wang T, Qi Y, Xu J, Hu X, Chen P (2005) Effects of poly(ethylene glycol) on electrical conductivity of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonic acid) film. Appl Surf Sci 250:188–194.  https://doi.org/10.1016/j.apsusc.2004.12.051 CrossRefGoogle Scholar
  28. 28.
    Ouyang L, Musumeci C, Jafari MJ, Ederth T, Inganäs O (2015) Imaging the phase separation between PEDOT and polyelectrolytes during processing of highly conductive PEDOT:PSS films. ACS Appl Mater Interfaces 7:19764–19773.  https://doi.org/10.1021/acsami.5b05439 CrossRefGoogle Scholar
  29. 29.
    Zaghib K (2008) Magnetic studies of phospho-olivine electrodes in relation with their electrochemical performance in Li-ion batteries. Solid State Ionics 179:16–23.  https://doi.org/10.1016/j.ssi.2007.12.071 CrossRefGoogle Scholar
  30. 30.
    Farah AA, Rutledge SA, Schaarschmidt A, Lai R, Freedman JP, Helmy AS (2012) Conductivity enhancement of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) films post-spincasting. J Appl Phys 112:113709.  https://doi.org/10.1063/1.4768265 CrossRefGoogle Scholar
  31. 31.
    Chong J, Xun S, Zheng H, Song X, Liu G, Ridgway P, Wang JQ, Battaglia VS (2011) A comparative study of polyacrylic acid and poly(vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells. J Power Sources 196:7707–7714.  https://doi.org/10.1016/j.jpowsour.2011.04.043 CrossRefGoogle Scholar
  32. 32.
    Lee S-Y, Ueno K, Angell CA (2012) Lithium salt solutions in mixed sulfone and sulfone-carbonate solvents: a Walden plot analysis of the maximally conductive compositions. The J Phys Chem C 116:23915–23920.  https://doi.org/10.1021/jp3067519 CrossRefGoogle Scholar
  33. 33.
    Zheng H, Li J, Song X, Liu G, Battaglia VS (2012) A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes. Electrochim Acta 71:258–265.  https://doi.org/10.1016/j.electacta.2012.03.161 CrossRefGoogle Scholar
  34. 34.
    Lee B-S, Wu Z, Petrova V, Xing X, Lim H-D, Liu H, Liu P (2018) Analysis of rate-limiting factors in thick electrodes for electric vehicle applications. J Electrochem Soc 165:A525–A533.  https://doi.org/10.1149/2.0571803jes CrossRefGoogle Scholar
  35. 35.
    Cíntora-Juárez D, Pérez-Vicente C, Ahmad S, Tirado JL (2014) Improving the cycling performance of LiFePO4 cathode material by poly(3,4-ethylenedioxythiopene) coating. RSC Adv 4:26108–26114.  https://doi.org/10.1039/C4RA05286B CrossRefGoogle Scholar
  36. 36.
    Trinh ND, Saulnier M, Lepage D, Schougaard SB (2013) Conductive polymer film supporting LiFePO4 as composite cathode for lithium ion batteries. J Power Sources 221:284–289.  https://doi.org/10.1016/j.jpowsour.2012.08.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryLomonosov Moscow State UniversityMoscowRussia
  2. 2.Skolkovo Institute of Science and TechnologyMoscowRussia

Personalised recommendations