Advertisement

Colloid and Polymer Science

, Volume 297, Issue 2, pp 191–200 | Cite as

Effect of ion partitioning on electrophoresis of soft particles

  • Ardalan Ganjizade
  • Seyed Nezameddin Ashrafizadeh
  • Arman SadeghiEmail author
Original Contribution
  • 21 Downloads

Abstract

The effect of ion partitioning, a phenomenon significantly affecting the arrangement of ions in an aqueous system due to spatial permittivity variations, on electrophoresis of spherical soft particles is analytically studied. Along with this line, the electric potential is considered small enough to allow applying the Debye-Hückel approximation, and the relaxation effect is neglected. The core is considered to have an arbitrary charge, and the charge of the polyelectrolyte layer is assumed to be homogeneous and independent of the electrolyte properties. The main result of this paper is an analytical expression for electrophoretic mobility, which is validated by comparing the results with the predictions of available analytical solutions valid for limiting conditions. The results indicate that the ion partitioning can significantly increase the electrophoretic mobility of soft particles. The influence of the ion partitioning increases with increasing the polyelectrolyte layer (PEL) friction factor and the electric charge of the core, whereas the opposite is true for the PEL charge.

Keywords

Electrophoresis Spherical soft particles Ion partitioning Analytical modeling 

Notes

Acknowledgments

The research council of Iran University of Science and Technology (IUST) is highly acknowledged for its financial support during the course of this project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hückel E (1924) Die kataphorese der kugel. Phys Z 25:204–210Google Scholar
  2. 2.
    Debye PWJ, Hückel E (1924) Bemerkungen zu einem Satze über die kataphoretische Wanderungsgeschwindigkeit suspendierter Teilchen. Hirzel 25:49Google Scholar
  3. 3.
    Henry CD (1931) The cataphoresis of suspended particles. Part I.—the equation of cataphoresis. Proc R Soc London Ser A 133:106 LP–106129CrossRefGoogle Scholar
  4. 4.
    Overbeek JTG (1943) Theorie der Elektrophorese. Kolloid-Beihefte 54:287–364.  https://doi.org/10.1007/BF02556774 Google Scholar
  5. 5.
    O’brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans 2 Mol Chem Phys 74:1607–1626.  https://doi.org/10.1006/jcis.2002.8232 CrossRefGoogle Scholar
  6. 6.
    Ohshima H (2000) Cell model calculation for electrokinetic phenomena in concentrated suspensions: an Onsager relation between sedimentation potential and electrophoretic mobility. Adv Colloid Interf Sci 88:1–18.  https://doi.org/10.1016/S0001-8686(00)00038-5 CrossRefGoogle Scholar
  7. 7.
    Ohshima H (2008) Donnan potential and surface potential of a spherical soft particle in an electrolyte solution. J Colloid Interface Sci 323:92–97.  https://doi.org/10.1016/j.jcis.2008.03.021 CrossRefGoogle Scholar
  8. 8.
    Ohshima H (1994) Electrophoretic mobility of soft particles. J Colloid Interface Sci 163:474–483.  https://doi.org/10.1006/jcis.1994.1126 CrossRefGoogle Scholar
  9. 9.
    Ohshima H (1995) Electrophoresis of soft particles. Adv Colloid Interf Sci 62:189–235.  https://doi.org/10.1016/0001-8686(95)00279-Y CrossRefGoogle Scholar
  10. 10.
    Ohshima H (2006) Electrophoresis of soft particles: analytic approximations. Electrophoresis 27:526–533.  https://doi.org/10.1002/elps.200500636 CrossRefGoogle Scholar
  11. 11.
    Liu HC, Keh HJ (2016) Electrophoresis and electric conduction in a suspension of charged soft particles. Colloid Polym Sci 294:1129–1141.  https://doi.org/10.1007/s00396-016-3863-1 CrossRefGoogle Scholar
  12. 12.
    Huang HY, Keh HJ (2015) Electrophoretic mobility and electric conductivity in suspensions of charge-regulating porous particles. Colloid Polym Sci 293:1903–1914.  https://doi.org/10.1007/s00396-015-3580-1 CrossRefGoogle Scholar
  13. 13.
    Hill RJ, Saville DA, Russel WB (2003) Electrophoresis of spherical polymer-coated colloidal particles. J Colloid Interface Sci 258:56–74.  https://doi.org/10.1016/S0021-9797(02)00043-7 CrossRefGoogle Scholar
  14. 14.
    Ahualli S, Jiménez ML, Carrique F, Delgado AV (2009) AC electrokinetics of concentrated suspensions of soft particles. Langmuir 25:1986–1997.  https://doi.org/10.1021/la803171f CrossRefGoogle Scholar
  15. 15.
    Zhang M, Ai Y, Kim DS, Jeong JH, Joo SW, Qian S (2011) Electrophoretic motion of a soft spherical particle in a nanopore. Colloids Surf B: Biointerfaces 88:165–174.  https://doi.org/10.1016/j.colsurfb.2011.06.027 CrossRefGoogle Scholar
  16. 16.
    López-García JJ, Grosse C, Horno J (2005) Analysis of the response of suspended colloidal soft particles to a constant electric field. J Colloid Interface Sci 286:400–409.  https://doi.org/10.1016/j.jcis.2005.01.021 CrossRefGoogle Scholar
  17. 17.
    López-García JJ, Grosse C, Horno J (2003) Numerical study of colloidal suspensions of soft spherical particles using the network method: 1. DC electrophoretic mobility. J Colloid Interface Sci 265:327–340.  https://doi.org/10.1016/S0021-9797(03)00536-8 CrossRefGoogle Scholar
  18. 18.
    Ohshima H (2011) Electrophoretic mobility of a highly charged soft particle: relaxation effect. Colloids Surfaces A Physicochem Eng Asp 376:72–75.  https://doi.org/10.1016/j.colsurfa.2010.09.012 CrossRefGoogle Scholar
  19. 19.
    Duval JFL, Van Leeuwen HP (2004) Electrokinetics of diffuse soft interfaces. 1. Limit of low Donnan potentials. Langmuir 20:10324–10336.  https://doi.org/10.1021/la0400508 CrossRefGoogle Scholar
  20. 20.
    Duval JFL (2005) Electrokinetics of diffuse soft interfaces. 2. Analysis based on the nonlinear Poisson - Boltzmann equation. langmuir 21:3247–3258.  https://doi.org/10.1021/la040108i CrossRefGoogle Scholar
  21. 21.
    Yezek LP, Duval JFL, Van Leeuwen HP (2005) Electrokinetics of diffuse soft interfaces. III. Interpretation of data on the polyacrylamide/water interface. Langmuir 21:6220–6227.  https://doi.org/10.1021/la0580006 CrossRefGoogle Scholar
  22. 22.
    Duval JFL, Merlin J, Narayana PAL (2011) Electrostatic interactions between diffuse soft multi-layered (bio)particles: beyond Debye–Hückel approximation and Deryagin formulation. Phys Chem Chem Phys 13:1037–1053.  https://doi.org/10.1039/C004243A CrossRefGoogle Scholar
  23. 23.
    Yeh L-H, Hsu J, Ohshima H (2016) Electrophoretic behavior of pH-regulated soft biocolloids. Encycl Biocolloid Biointerface Sci 2V set:946–960.  https://doi.org/10.1002/9781119075691.ch76 CrossRefGoogle Scholar
  24. 24.
    Gopmandal PP, Bhattacharyya S, Banerjee M, Ohshima H (2016) Electrophoresis of soft particles with charged rigid core coated with pH-regulated polyelectrolyte layer. Colloid Polym Sci 294:1845–1856.  https://doi.org/10.1007/s00396-016-3948-x CrossRefGoogle Scholar
  25. 25.
    Phan AD, Tracy DA, Nguyen TLH, Viet NA, Phan TL, Nguyen TH (2013) Electric potential profile of a spherical soft particle with a charged core. J Chem Phys 139(24):244908.  https://doi.org/10.1063/1.4851196 CrossRefGoogle Scholar
  26. 26.
    McDaniel K, Valcius F, Andrews J, Das S (2015) Electrostatic potential distribution of a soft spherical particle with a charged core and pH-dependent charge density. Colloids Surf B: Biointerfaces 127:143–147.  https://doi.org/10.1016/j.colsurfb.2015.01.025 CrossRefGoogle Scholar
  27. 27.
    Maurya SK, Gopmandal PP, Ohshima H (2018) Electrophoresis of concentrated suspension of soft particles with volumetrically charged inner core. Colloid Polym Sci 296:721–732.  https://doi.org/10.1007/s00396-018-4292-0 CrossRefGoogle Scholar
  28. 28.
    De S, Bhattacharyya S, Gopmandal PP (2016) Importance of core electrostatic properties on the electrophoresis of a soft particle. Phys Rev E 94:022611.  https://doi.org/10.1103/PhysRevE.94.022611 CrossRefGoogle Scholar
  29. 29.
    Gopmandal PP, Bhattacharyya S, Ohshima H (2016) Effect of core charge density on the electrophoresis of a soft particle coated with polyelectrolyte layer. Colloid Polym Sci 294:727–733.  https://doi.org/10.1007/s00396-015-3824-0 CrossRefGoogle Scholar
  30. 30.
    Bhattacharyya S, De S (2016) Influence of rigid core permittivity and double layer polarization on the electrophoresis of a soft particle: a numerical study. Phys Fluids 28:012001.  https://doi.org/10.1063/1.4938117 CrossRefGoogle Scholar
  31. 31.
    Gopmandal PP, Bhattacharyya S, Banerjee M, Ohshima H (2016) Electrophoresis of diffuse soft particles with dielectric charged rigid core grafted with charge regulated inhomogeneous polymer segments. Colloids Surfaces A Physicochem Eng Asp 504:116–125.  https://doi.org/10.1016/j.colsurfa.2016.05.021 CrossRefGoogle Scholar
  32. 32.
    Poddar A, Maity D, Bandopadhyay A, Chakraborty S (2016) Electrokinetics in polyelectrolyte grafted nanofluidic channels modulated by the ion partitioning effect. Soft Matter 12:5968–5978.  https://doi.org/10.1039/C6SM00275G CrossRefGoogle Scholar
  33. 33.
    Ganjizade A, Ashrafizadeh SN, Sadeghi A (2017) Effect of ion partitioning on the electrostatics of soft particles with a volumetrically charged core. Electrochem Commun 84:19–23.  https://doi.org/10.1016/j.elecom.2017.09.017 CrossRefGoogle Scholar
  34. 34.
    Maurya SK, Gopmandal PP, Bhattacharyya S, Ohshima H (2018) Ion partitioning effect on the electrophoresis of a soft particle with hydrophobic core. Phys Rev E 98:023103.  https://doi.org/10.1098/rspa.2016.0942 CrossRefGoogle Scholar
  35. 35.
    Majee PS, Bhattacharyya S, Dutta P (2018) On electrophoresis of a pH-regulated nanogel with ion partitioning effects. Electrophoresis.  https://doi.org/10.1002/elps.201800291
  36. 36.
    Ganjizade A, Sadeghi A, Ashrafizadeh SN (2018) Effect of ion partitioning on electrostatics of soft particles with volumetrically charged inner core coated with pH-regulated polyelectrolyte layer. Colloids Surf B: Biointerfaces 170:129–135.  https://doi.org/10.1016/j.colsurfb.2018.05.053 CrossRefGoogle Scholar
  37. 37.
    Duval JFL, Ohshima H (2006) Electrophoresis of soft particles. Langmuir 22:3533–3546.  https://doi.org/10.1016/0001-8686(95)00279-Y CrossRefGoogle Scholar
  38. 38.
    Nightingale Jr ER (1959) Phenomenological theory of ion solvation. Effective radii of hydrated ions. J Phys Chem 9:1381–1387.  https://doi.org/10.1021/j150579a011 CrossRefGoogle Scholar
  39. 39.
    Raafatnia S, Hickey OA, Holm C (2014) Mobility reversal of polyelectrolyte-grafted colloids in monovalent salt solutions. Phys Rev Lett 113:238301.  https://doi.org/10.1103/PhysRevLett.113.238301 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ardalan Ganjizade
    • 1
  • Seyed Nezameddin Ashrafizadeh
    • 1
  • Arman Sadeghi
    • 2
    Email author
  1. 1.Research Lab for Advanced Separation Processes, Department of Chemical EngineeringIran University of Science and TechnologyTehranIran
  2. 2.Department of Mechanical EngineeringUniversity of KurdistanSanandajIran

Personalised recommendations