Colloid and Polymer Science

, Volume 297, Issue 4, pp 521–527 | Cite as

Moisture-activated dynamics on crystallite surfaces in cellulose

  • Christopher J. GarveyEmail author
  • George P. Simon
  • Andrew K. Whittaker
  • Ian H. Parker
Original Contribution


The structural basis of the interdependence between moisture content and activation of cooperative dynamics in natural cellulose is explored using a solid state NMR experiment which is able to localize these motions to cellulose chains on the surface of the unitary crystallite. Making assumptions based on current knowledge of biosynthesis of cellulose and the dipolar line widths of 1H spectra in solids, it is shown that the sorption of moisture causes the activation of cooperative motion of cellulose chains on the surface of the cellulose crystallite in a manner which is related to the moisture content. An important implication for these results is that densification of cellulose and associated changes in the water sorption isotherm, is possible by structural relaxation on the nano, or unitary crystallite scale. The result is also discussed in term of the evolving and modern picture of cellulose.


Cellulose Microfibril Structural relaxation Solid state NMR 


Funding information

This work was possible due to financial support from the Cooperative Research Center for Hardwood Fibre and Paper Science.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Cosgrove DJ (2000) Expansive growth of plant cell walls. Plant Physiol Biochem 38(1–2):109–124. CrossRefPubMedGoogle Scholar
  2. 2.
    Olsson A-M, Salmén L (2001) Molecular mechanisms involved in creep phenomena of paper. J Appl Polym Sci 79(9):1590–1595.<1590::aid-app70>;2-5 CrossRefGoogle Scholar
  3. 3.
    Olsson A-M, Salmén L, Eder M, Burgert I (2007) Mechano-sorptive creep in wood fibres. Wood Sci Technol 41(1):59–67. CrossRefGoogle Scholar
  4. 4.
    Haslach HW (2000) The moisture and rate-dependent mechanical properties of paper: a review. Mechanics of Time-Dependent Materials 4(3):169–210CrossRefGoogle Scholar
  5. 5.
    Fridley KJ (1992) Designing for creep in wood structures. For Prod J 42(3):23–28Google Scholar
  6. 6.
    De Spirito M, Missori M, Papi M, Maulucci G, Teixeira J, Castellano C, Arcovito G (2008) Modifications in solvent clusters embedded along the fibers of a cellulose polymer network cause paper degradation. Phys Rev E 77(4):041801CrossRefGoogle Scholar
  7. 7.
    Missori M, Mondelli C, De Spirito M, Castellano C, Bicchieri M, Schweins R, Arcovito G, Papi M, Castellano AC (2006) Modifications of the mesoscopic structure of cellulose in paper degradation. Phys Rev Lett 97 (23).
  8. 8.
    Kato KL, Cameron RE (1999) Structure-property relationships in thermally aged cellulose fibers and paper. J Appl Polym Sci 74(6):1465–1477.<1465::aid-app20>;2-3 CrossRefGoogle Scholar
  9. 9.
    Salmen NL, Back EL (1980) Moisture-dependent thermal softening of paper, evaluated by its elastic-modulus. Tappi 63(6):117–120Google Scholar
  10. 10.
    Salmen NL, Back EL (1977) Influence of water on glass-transition temperature of cellulose. Tappi 60(12):137–140Google Scholar
  11. 11.
    Struik LCE (1978) Physical aging in amorphous polymers and other materials. Elsevier Scientific Publishing Company,Google Scholar
  12. 12.
    Stuart HA (1959) Problems of high-polymer crystallinity. Annals of the New York Academy of Science 83(1):3–19. CrossRefGoogle Scholar
  13. 13.
    Schmidt-Rohr K, Clauss J, Spiess HW (1992) Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy. Macromolecules 25(12):3273–3277. CrossRefGoogle Scholar
  14. 14.
    Pogson EM, Scott A, Garvey CJ, Lewis RA, Ieee (2010) THz-TDS of filter paper at differing humidities. 35th international conference on infrared, millimeter, and Terahertz Waves. Ieee, New YorkGoogle Scholar
  15. 15.
    Garvey CJ, Parker IH, Simon GP (2000) “The deconvolution of wide angle x-ray diffraction patterns from paper within the two phase model.”, 54th APPITA Annual General Conference Proceedings 2:635–643Google Scholar
  16. 16.
    Garvey C, Parker I, Knott R, Simon G (2004) Small angle scattering in the Porod region from hydrated paper sheets at varying humidities. Holzforschung 58(5):473–479CrossRefGoogle Scholar
  17. 17.
    Garvey C, Parker I, Simon G, Whittaker A (2006) The hydration of paper studied with solid-state magnetisation-exchange H-1 NMR spectroscopy. Holzforschung 60(4):409–416. CrossRefGoogle Scholar
  18. 18.
    Garvey CJ (2002) The structural and dynamic changes in paper polymers caused by ambient hydration. Thesis (Ph.D.) Monash University, 2004.Google Scholar
  19. 19.
    Garvey CJ, Khan MS, Weir MP, Garnier G (2017) Localisation of alkaline phosphatase in the pore structure of paper. Colloid Polym Sci 295(8):1293–1304. CrossRefGoogle Scholar
  20. 20.
    Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206(15):1568–1575. CrossRefGoogle Scholar
  21. 21.
    Garvey CJ, Parker IH, Simon GP, (1999) The comparison of dielectric loss spectra of paper materials in the temperature and moisture content domains. Tappi international paper physics conference. Tappi proceedings, pp 55–66Google Scholar
  22. 22.
    Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using C-13 NMR signal strengths. Solid State Nucl Magn Reson 15(1):21–29. CrossRefPubMedGoogle Scholar
  23. 23.
    Kumar M, Turner S (2015) Plant cellulose synthesis: CESA proteins crossing kingdoms. Phytochemistry 112:91–99. CrossRefPubMedGoogle Scholar
  24. 24.
    Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43(12):1407–1420. CrossRefPubMedGoogle Scholar
  25. 25.
    Strobl GR (2007) The physics of polymers: concepts for understanding their structures and behavior. SpringerGoogle Scholar
  26. 26.
    Kolpak FJ, Blackwell J (1976) Determination of structure of cellulose II. Macromolecules 9(2):273–278. CrossRefPubMedGoogle Scholar
  27. 27.
    Baker AA, Helbert W, Sugiyama J, Miles MJ (2000) New insight into cellulose structure by atomic force microscopy shows the I-alpha crystal phase at near-atomic resolution. Biophys J 79(2):1139–1145CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kuutti L, Peltonen J, Pere J, Teleman O (1995) Identification and surface structure of crystalline cellulose studied by atomic force microscopy. J Microsc 178(1):1–6. CrossRefGoogle Scholar
  29. 29.
    Krässig HA (1993) Cellulose: structure, accessibility, and reactivity. CRC Press IncGoogle Scholar
  30. 30.
    Batten GL, Nissan AH (1987) Unified theory of the mechanical-properties of paper and other h-bond-dominated solids. TAPPI J 70(9):119–123Google Scholar
  31. 31.
    Nissan AH (1957) The rheological behaviour of hydrogen-bonded solids 1. Primary considerations. Trans Faraday Soc 53(5):700–709. CrossRefGoogle Scholar
  32. 32.
    Nissan AH (1976) H-bond dissociation in hydrogen-bond dominated solids. Macromolecules 9(5):840–850. CrossRefGoogle Scholar
  33. 33.
    Eriksson M, Notley SM, Wagberg L (2007) Cellulose thin films: degree of cellulose ordering and its influence on adhesion. Biomacromolecules 8(3):912–919. CrossRefPubMedGoogle Scholar
  34. 34.
    Holmberg M, Berg J, Stemme S, Ödberg L, Rasmusson J, Claesson P (1997) Surface force studies of Langmuir–Blodgett cellulose films. J Colloid Interface Sci 186(2):369–381. CrossRefPubMedGoogle Scholar
  35. 35.
    Muller M, Czihak C, Schober H, Nishiyama Y, Vogl G (2000) All disordered regions of native cellulose show common low-frequency dynamics. Macromolecules 33(5):1834–1840. CrossRefGoogle Scholar
  36. 36.
    Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci U S A 108(47):E1195–E1203. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wang T, Park YB, Cosgrove DJ, Hong M (2015) Cellulose-pectin spatial contacts are inherent to never-dried Arabidopsis primary cell walls: evidence from solid-state nuclear magnetic resonance. Plant Physiol 168 (3):871−+.
  38. 38.
    Hediger S, Lesage A, Emsley L (2002) A new NMR method for the study of local mobility in solids and application to hydration of biopolymers in plant cell walls. Macromolecules 35(13):5078–5084. CrossRefGoogle Scholar
  39. 39.
    Newman RH, Hill SJ, Harris PJ (2013) Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol 163(4):1558–1567. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Garvey C, Keckes J, Parker I, Beilby M, Lee G (2006) Polymer nanoscale morphology in Chara australis Brown cell walls studied by advanced solid state techniques. Cryptogam Algol 27(4):391–401Google Scholar
  41. 41.
    Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state Nmr and polymers. Academic PressGoogle Scholar
  42. 42.
    Hill DJT, Le TT, Whittaker AK (1994) A technique for the quantitative measurements of signal intensities in cellulose-based transformer insulators by13C CPMAS NMR. Cellulose 1(4):237–247. CrossRefGoogle Scholar
  43. 43.
    Domjan A, Erdodi G, Wilhelm M, Neidhofer M, Landfester K, Ivan B, Spiess HW (2003) Structural studies of nanophase-separated poly(2-hydroxyethyl methacrylate)-l-polyisobutylene amphiphilic conetworks by solid-state NMR and small-angle x-ray scattering. Macromolecules 36(24):9107–9114. CrossRefGoogle Scholar
  44. 44.
    Atalla RH, Vanderhart DL (1984) Native cellulose - a composite of 2 distinct crystalline forms. Science 223(4633):283–285. CrossRefPubMedGoogle Scholar
  45. 45.
    Kulasinski K (2017) Free energy landscape of cellulose as a driving factor in the mobility of adsorbed water. Langmuir 33(22):5362–5370. CrossRefPubMedGoogle Scholar
  46. 46.
    Keckes J, Burgert I, Frühmann K, Müller M, Kölln K, Hamilton M, Burghammer M, Roth SV, Stanzl-Tschegg S, Fratzl P (2003) Cell-wall recovery after irreversible deformation of wood. Nat Mater 2:810. doi:10.1038/nmat1019, 813Google Scholar
  47. 47.
    Keckes J, Burgert I, Müller M, Kölln K, Hamilton M, Burghammer M, Roth SV, Stanzl-Tschegg SE, Fratzl P (2005) In-situ WAXS studies of structural changes in wood foils and in individual wood cells during microtensile tests. Fibre Diffraction Review 13:4–51. CrossRefGoogle Scholar
  48. 48.
    Crank J (1979) The mathematics of diffusion. [Eng] Clarendon PressGoogle Scholar
  49. 49.
    Gupta H, Chatterjee SG (2003) Parallel diffusion of moisture in paper. Part 1: steady-state conditions. Ind Eng Chem Res 42(25):6582–6592. CrossRefGoogle Scholar
  50. 50.
    Ahlen AT (1970) Diffusion of sorbed water vapor through paper and cellulose film. Tappi 53 (7):1320–1326Google Scholar
  51. 51.
    Nilsson L, Wilhelmsson B, Stenstrom S (1993) The diffusion of water-vapor through pulp and paper. Dry Technol 11(6):1205–1225. CrossRefGoogle Scholar
  52. 52.
    Garvey CJ, Simon GP, Knott RB, Whittaker AK, Parker IH (2003) An experimental study by NMR and SANS of the ambient hydration of paper. In: Baker CF (ed) The science of papermaking: transactions of the 12th fundamental research symposium held in Oxford, September 2001, vol 1. FRC, Pulp & Paper Fundamental Research Society, pp 359–392Google Scholar
  53. 53.
    Mark RE, Angello AJ, Thorpe JL, Perkins RW, Gillis PP (1971) Twisting energy of holocellulose fibers. J Polym Sci Part C-Polymer Symp (36):177-&Google Scholar
  54. 54.
    Lindh EL, Terenzi C, Salmen L, Furo I (2017) Water in cellulose: evidence and identification of immobile and mobile adsorbed phases by H-2 MAS NMR. Phys Chem Chem Phys 19(6):4360–4369. CrossRefPubMedGoogle Scholar
  55. 55.
    Nogales A, Hsiao BS, Somani RH, Srinivas S, Tsou AH, Balta-Calleja FJ, Ezquerra TA (2001) Shear-induced crystallization of isotactic polypropylene with different molecular weight distributions: in situ small- and wide-angle X-ray scattering studies. Polymer 42(12):5247–5256. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Australian Nuclear Science and Technology OrganisationMenaiAustralia
  2. 2.Department of Materials Science and EngineeringMonash UniversityClaytonAustralia
  3. 3.Australian Institute for Bioengineering and Nanotechnology & Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
  4. 4.Department of Chemical EngineeringMonash UniversityClaytonAustralia

Personalised recommendations