Colloid and Polymer Science

, Volume 297, Issue 2, pp 307–313 | Cite as

Use of anchoring amphiphilic diblock copolymers for encapsulation of hydrophilic actives in polymeric microcapsules: methodology and encapsulation efficiency

  • Markus Andersson TrojerEmail author
  • Asvad A. Gabul-Zada
  • Anna Ananievskaia
  • Lars Nordstierna
  • Marcus Östman
  • Hans Blanck
Short Communication


Aqueous core-shell particles based on polystyrene, poly(methyl methacrylate) or polycaprolactone have been formulated using a facile double emulsion-based solvent evaporation method. The size distribution is narrow, and the morphology control is remarkable given the simple characteristics of the encapsulation method. The inner droplets are stabilized by oil-soluble poly(ethylene oxide)-based block copolymers which are anchored in the polymeric shell by using hydrophobic blocks of the same type as that of the shell-forming polymer. This facilitates the efficient encapsulation of dyes and hydrophilic biocides.

Graphical abstract

Structural and chemical composition of aqueous core-polymer shell particles stabilized by oil-soluble amphiphiles.


Microcapsules Double emulsion Polymer brushes Encapsulation Amphiphiles 


Funding information

This study is funded by The Swedish Research Council FORMAS (2012-86 and 2016-61), Vinnova (2017-04693), and the foundation Bengt Lundqvist minne (post-doctoral grant, no grant number available).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2018_4463_MOESM1_ESM.docx (2.4 mb)
ESM 1 (DOCX 2438 kb)


  1. 1.
    Thies C (2005) Microencapsulation. In: Kroschwitz JI (ed) Kirk-Othmer encyclopedia of chemical technology. Wiley, N.YGoogle Scholar
  2. 2.
    Shlomo M, Alexander K (2007) Microencapsulation, Encyclopedia of Surface and Colloid Science, Second Edition, Taylor & Francis, pp. 3957–3969Google Scholar
  3. 3.
    Finch CA, Bodmeier R (2002) Microencapsulation. In: Bohnet M (ed) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
    Lensen D, Vriezema DM, van Hest JCM (2008) Polymeric microcapsules for synthetic applications. Macromol Biosci 8(11):991–1005CrossRefGoogle Scholar
  5. 5.
    Ghosh SK (2006) Functional coatings and microencapsulation: a general perspective. In: Ghosh SK (ed) Functional coatings. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  6. 6.
    Nordstierna L, Abdalla AA, Masuda M, Skarnemark G, Nydén M (2010) Molecular release from painted surfaces: free and encapsulated biocides. Prog Org Coat 69(1):45–48CrossRefGoogle Scholar
  7. 7.
    Paul RD, Polymers in controlled release technology, controlled release polymeric formulations, ACS1976, pp. 1–14Google Scholar
  8. 8.
    Esser-Kahn AP, Odom SA, Sottos NR, White SR, Moore JS (2011) Triggered release from polymer capsules, macromolecules (Washington, DC). United States 44(14):5539–5553Google Scholar
  9. 9.
    Andersson Trojer M, Andersson H, Li Y, Borg J, Holmberg K, Nyden M, Nordstierna L (2013) Charged microcapsules for controlled release of hydrophobic actives part III: effect of polyelectrolyte brush- and multilayers on sustained release. Phys Chem Chem Phys 15(17):6456–6466CrossRefGoogle Scholar
  10. 10.
    Andersson Trojer M, Li Y, Abrahamsson C, Mohamed A, Eastoe J, Holmberg K, Nyden M (2013) Charged microcapsules for controlled release of hydrophobic actives part I: encapsulation methodology and interfacial properties. Soft Matter 9(5):1468–1477CrossRefGoogle Scholar
  11. 11.
    Andersson Trojer M, Nordstierna L, Nordin M, Nyden BM, Holmberg K (2013) Encapsulation of actives for sustained release. Phys Chem Chem Phys 15(41):17727–17741CrossRefGoogle Scholar
  12. 12.
    Nordstierna L, Abdalla AA, Nordin M, Nyden M (2010) Comparison of release behavior from microcapsules and microspheres. Prog Org Coat 69(1):49–51CrossRefGoogle Scholar
  13. 13.
    Bergek J, Andersson Trojer M, Uhr H, Nordstierna L (2016) Controlled release of a microencapsulated arduous semi-hydrophobic active from coatings: Superhydrophilic polyelectrolyte shells as globally rate-determining barriers. J Control Release 225:31–39CrossRefGoogle Scholar
  14. 14.
    Andersson Trojer M, Li Y, Wallin M, Holmberg K, Nyden M (2013) Charged microcapsules for controlled release of hydrophobic actives part II: surface modification by LbL adsorption and lipid bilayer formation on properly anchored dispersant layers. J Colloid Interface Sci 409(1):8–17CrossRefGoogle Scholar
  15. 15.
    Andersson Trojer M, Wendel A, Holmberg K, Nydén M (2012) The effect of pH on charge, swelling and desorption of the emulsifier poly(methacrylic acid) from poly(methyl methacrylate) microcapsules. J Colloid Interface Sci 375(1):213–215CrossRefGoogle Scholar
  16. 16.
    Andersson Trojer M (2015) Polymeric Core-Shell particles: physicochemical properties and controlled release. In: Somasundaran P (ed) Encyclopedia of surface and colloid science. Taylor and Francis, New York. Google Scholar
  17. 17.
    Andersson Trojer M, Nordstierna L, Bergek J, Blanck H, Holmberg K, Nyden BM (2015) Use of microcapsules as controlled release devices for coatings. Adv Colloid Interf Sci 222(Reinhard Miller, Honorary Issue):18–43CrossRefGoogle Scholar
  18. 18.
    Atkin R, Davies P, Hardy J, Vincent B (2004) Preparation of aqueous core/polymer shell microcapsules by internal phase separation. Macromolecules 37(21):7979–7985CrossRefGoogle Scholar
  19. 19.
    Caruso F, Caruso RA, Moehwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science (Washington, D. C) 282(5391):1111–1114CrossRefGoogle Scholar
  20. 20.
    Kim S-H, Abbaspourrad A, Weitz DA (2011) Amphiphilic crescent-moon-shaped microparticles formed by selective adsorption of colloids. J Am Chem Soc 133(14):5516–5524CrossRefGoogle Scholar
  21. 21.
    Zhang J, Coulston RJ, Jones ST, Geng J, Scherman OA, Abell C (2012) One-step fabrication of supramolecular microcapsules from microfluidic droplets. Science (Washington, DC, United States) 335(6069):690–694CrossRefGoogle Scholar
  22. 22.
    Shim JW, Kim S-H, Jeon S-J, Yang S-M, Yi G-R (2010) Microcapsules with tailored nanostructures by microphase separation of block copolymers. Chem Mater 22(19):5593–5600CrossRefGoogle Scholar
  23. 23.
    Benichou A, Aserin A, Garti N (2004) Double emulsions stabilized with hybrids of natural polymers for entrapment and slow release of active matters. Adv Colloid Interf Sci 108-109:29–41CrossRefGoogle Scholar
  24. 24.
    Garti N (1997) Double emulsions - scope, limitations and new achievements. Colloids Surf A Physicochem Eng Asp 123-124:233–246CrossRefGoogle Scholar
  25. 25.
    Garti N, Lutz R (2012) Double emulsions, Encyclopedia of surface and colloid science (2nd edition) 1816-1845, 30 pp.Google Scholar
  26. 26.
    Bengtsson-Palme J, Hammaren R, Pal C, Oestman M, Bjoerlenius B, Flach C-F, Fick J, Kristiansson E, Tysklind M, Larsson DGJ (2016) Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci Total Environ 572:697–712CrossRefGoogle Scholar
  27. 27.
    Lundstroem SV, Oestman M, Bengtsson-Palme J, Rutgersson C, Thoudal M, Sircar T, Blanck H, Eriksson KM, Tysklind M, Flach C-F, Larsson DGJ (2016) Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms. Sci Total Environ 553:587–595CrossRefGoogle Scholar
  28. 28.
    Garti N, Benichou A (2004) Recent developments in double emulsions for food applications, Food Science and Technology (New York, NY, United States) 132 (Food Emulsions (4th Edition)) 353–412Google Scholar
  29. 29.
    Pence HE, Williams A (2010) ChemSpider: an online chemical information resource. J Chem Educ 87(11):1123–1124CrossRefGoogle Scholar
  30. 30.
    Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) PubChem: integrated platform of small molecules and biological activities. Ann Rep Comput Chem 4:217–241CrossRefGoogle Scholar
  31. 31.
    Goodman J (2009) Computer software review: Reaxys, J. Chem Inf Model. 49(Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.) 2897–2898Google Scholar
  32. 32.
    Andersson Trojer M, Holmberg K, Nydén M (2012) The importance of proper anchoring of an amphiphilic dispersant for colloidal stability. Langmuir 28(9):4047–4050CrossRefGoogle Scholar
  33. 33.
    Karlström G (2000) On the origin of the solution behaviour of ethyleneoxide containing polymers A2 - Alexandridis, Paschalis. In: Lindman B (ed) Amphiphilic block copolymers, Elsevier science B.V., Amsterdam, pp 41–55CrossRefGoogle Scholar
  34. 34.
    Andersson Trojer M, Ananievskaia A, Gabul-Zada AA, Nordstierna L, Blanck H (2018) Polymer core-polymer shell particle formation enabled by ultralow interfacial tension via internal phase separation: morphology prediction using the Van Oss formalism. Colloid Interface Sci Commun 25:36–40CrossRefGoogle Scholar
  35. 35.
    Liu R, Ma G, Meng F-T, Su Z-G (2005) Preparation of uniform-sized PLA microcapsules by combining Shirasu porous glass membrane emulsification technique and multiple emulsion-solvent evaporation method. J Control Release 103(1):31–43CrossRefGoogle Scholar
  36. 36.
    O'Donnell PB, McGinity JW (1997) Preparation of microspheres by the solvent evaporation technique. Adv Drug Deliv Rev 28(1):25–42CrossRefGoogle Scholar
  37. 37.
    Skirtach AG, Yashchenok AM, Moehwald H (2011) Encapsulation, release and applications of LbL polyelectrolyte multilayer capsules. Chem Commun 47(48):12736–12746CrossRefGoogle Scholar
  38. 38.
    Andersson M, Hansson O, Oehrstroem L, Idstroem A, Nyden M (2011) Vinylimidazole copolymers: coordination chemistry, solubility, and cross-linking as function of Cu2+ and Zn2+ complexation. Colloid Polym Sci 289(12):1361–1372CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Markus Andersson Trojer
    • 1
    • 2
    Email author
  • Asvad A. Gabul-Zada
    • 3
  • Anna Ananievskaia
    • 3
  • Lars Nordstierna
    • 4
  • Marcus Östman
    • 5
  • Hans Blanck
    • 3
  1. 1.Department of Materials, Division of bio-based fibres, RISE IVFMölndalSweden
  2. 2.Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesPotsdamGermany
  3. 3.Department of Biological and Environmental SciencesUniversity of GothenburgGöteborgSweden
  4. 4.Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborgSweden
  5. 5.Department of ChemistryUmeå UniversityUmeåSweden

Personalised recommendations