Colloid and Polymer Science

, Volume 297, Issue 2, pp 297–305 | Cite as

Synthesis of ferrofluids using a chemically induced transition method and their characterization

  • Xiangshen Meng
  • Xiaoyan Qiu
  • Jianwei Zhao
  • Yueqiang Lin
  • Xiaodong Liu
  • Decai Li
  • Jian LiEmail author
  • Zhenghong HeEmail author
Original Contribution


Using an altering chemically induced transition route, magnetic nanoparticles as well as nanoparticles modified with oleic acid have been prepared. The modified nanoparticles have been used to synthesize a high-quality kerosene-based ferrofluid, in which the mass fraction percentage of particles consisting of a γ-Fe2O3 core and an oleic acid coating, ϕm, amounted to 55%. Ferrofluids having lower concentrations of particles were obtained by diluting the mother ferrofluid. Magnetization measurements showed the as-synthesized ferrofluids to have excellent dispersity of the particles and field-induced inter-particle interactions. Optical transparency measurements confirmed that the ferrofluids showed a sensitive field-induced effect of chain-like aggregation, with redispersion of the particles after removing the magnetic field. According to results concerning both particle structure and ferrofluid density, the volume fraction percentage of particles, including both the γ-Fe2O3 core and the oleic acid coating, ϕ′v, as well as that of the γ-Fe2O3 alone, ϕv, can be deduced.


Ferrofluids Synthesis Characterization 



This study was funded by the Doctoral Foundation of Southwest University (grant number SWU115010) and the Fundamental Research Funds for the Central Universities (grant number XDJK2018B034).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Jun YW, Seo JW, Chon J (2008) Nanoscaling laws of magnetic nanoparticles and their application in biomedical science. Acc Chem Res 41:179–189CrossRefGoogle Scholar
  2. 2.
    Singamanení S, Bliznyuk VN, Bineks C, Tymbal EY (2011) Magnetic nanoparticles: recent advances in synthesis, self-assembly and application. J Mater Chem 21:16819–16845CrossRefGoogle Scholar
  3. 3.
    Chen F, Smith KA, Hatton TA (2012) A dynamic buildup growth model for magnetic particle accumulation on single wires in high gradient magnetic separation. AICHE J 58:2865–2874CrossRefGoogle Scholar
  4. 4.
    Angelakeris M (2017) Magnetic nanoparticles: a multifunctional vehicle for modern theranostics. Biochim BiophysActa 1861:1642–1651Google Scholar
  5. 5.
    Yeom J, Santos US, Chekini M, Cha M, de Moura MF, Kotav NA (2018) Chiromagnetic nanoparticles and gels. Science 359:309–314CrossRefGoogle Scholar
  6. 6.
    Berkovsky BM, Medvedev VF and Krakov MS (1993) Magnetic fluids engineering application. Oxford Sci Publi, p1Google Scholar
  7. 7.
    Sousa MH, Tourinho FA, Depeyrot J, da Silva GJ, Lara MCFL (2001) New electric double-layered magnetic fluids based on copper, nickel, and zinc ferrite nanostructures. J Phys Chem B 105:1168–1175CrossRefGoogle Scholar
  8. 8.
    Holm C, Weis J-J (2005) The structure of ferrofluids: a status report. Curr Opin Colloid Interface Sci 10:133–140CrossRefGoogle Scholar
  9. 9.
    Gautam N, Thirupathi G, Singh R (2016) Magnetoviscosity of paraffin-based barium ferrite ferrofluid. IEEE Trans Magn 52:4600204CrossRefGoogle Scholar
  10. 10.
    Odenbach S (2002) Ferrofluids. Springer-Verlag, Berlin/Heidelberg, p 4CrossRefGoogle Scholar
  11. 11.
    Dejneka MI, Powell C, Borrelli N, Ouzounov D, Gaeta A (2005) Transparent magnetic glass-ceramics. J Amer Ceram 88:2431–2435CrossRefGoogle Scholar
  12. 12.
    Pu SL, Yao LF, Guan FF, Liu M (2009) Threshold-tunable optical limiters based on nonlinear refraction in ferrosols. Opt Commun 282:908–912CrossRefGoogle Scholar
  13. 13.
    Pop LM, Odenbach S (2006) Investigation of the microscopic reason for the magnetoviscons effect in ferrofluids study by small angle neutron scattering. J Phys Condens Matter 18:S2785–S2802CrossRefGoogle Scholar
  14. 14.
    Buzmakov VM, Pshenichnikov AF (1996) On the structure of microaggregates in magnetite colloids. J Colloid Interface Sci 182:63–70CrossRefGoogle Scholar
  15. 15.
    Taketomi S, Drew RV, Shull RD (2006) Peculiar magnetic after-effect of highly diluted frozen magnetic fluids. J Magn Magn Mater 307:77–84CrossRefGoogle Scholar
  16. 16.
    Lin YQ, Li J, Liu XD, Zhang TZ, Wen BC, Zhang QM, Miao H (2010) Saturation magnetization and law of approach to saturation for self-formed ionic ferrofluids based on MnFe2O4 nanoparticles. Chin J Chem Phys 23:325–330CrossRefGoogle Scholar
  17. 17.
    Fosa G, Bǎdescu R, Cǎlugǎru G, Bǎdescu V (2006) Measuring the transitivity of light: a tool for testing the quality of magnetic liquids. Opt Mater 28:461–465CrossRefGoogle Scholar
  18. 18.
    Baraban L, Erbe A, Leíderer P (2007) Characterization of magnetic colloids by means of magneto-optics. Eur Phys J E 23:129–133CrossRefGoogle Scholar
  19. 19.
    Li J, Zhao BG, Lin YQ, Qiu XY, Ma XJ (2002) Transmission of light in ionic ferrofluid. J Appl Phys 92:1128–1131CrossRefGoogle Scholar
  20. 20.
    Li J, Huang Y, Liu XD, Lin YQ, Li Q, Gao RL (2008) Coordinated chain motion resulting in intensity variation of light transmitted through ferrofluid film. Phys Lett A 372:6952–6955CrossRefGoogle Scholar
  21. 21.
    Mathew DS, Juang R-S (2007) An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 129:51–65CrossRefGoogle Scholar
  22. 22.
    Akbarzadem A, Samíeí M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144CrossRefGoogle Scholar
  23. 23.
    Bagheri S, Julkapli NM (2016) Modified iron oxide nanomaterials: functionalization and application. J Magn Magn Mater 416:117–133CrossRefGoogle Scholar
  24. 24.
    Chen YS, Chen Q, Mao H, Zhang T, Qiu XY, Lin YQ, Li J (2017) Preparation of magnetic nanoparticles via chemically induced transition: dependence of components and magnetization on the concentration of treating solution used. Nanomater Nanotech 7:1–9CrossRefGoogle Scholar
  25. 25.
    Zhang T, Meng XS, He ZH, Lin YQ, Liu XD, Li DC, Li J, Qiu XY (2017) Preparation of magnetic nanoparticles via a chemically induced transition: role of treating solution’s temperature. Nano 7:220Google Scholar
  26. 26.
    Li JM, Li J, Mao H, Lin YQ (2016) Ionic ferrofluids comprising γ-Fe2O3 nanoparticles prepared by chemically induced transition: synthesis and magnetization behavior. J Nanofluids 5:42–47CrossRefGoogle Scholar
  27. 27.
    Meng XS, He ZH, Zhao JW, Lin YQ, Liu XD, Li DC, Li J, Qiu XY (2018) Oleic acid surface modification in the preparation of magnetic nanoparticles by a chemically induced transition. IEEE Trans Magn 54:2300107Google Scholar
  28. 28.
    Tourinho FA, Franck R, Massart R (1990) Aqueous ferrofluids based on manganese and cobalt ferrites. J Mater Sci 25:3249–3254CrossRefGoogle Scholar
  29. 29.
    Wen BC, Li J, Lin YQ, Liu XD, Fu J, Mao H, Zhang QM (2011) A novel preparation method for γ-Fe2O3 nanoparticles and their characterization. Mater Chem Phys 128:35–38CrossRefGoogle Scholar
  30. 30.
    Sayo T, Iijma T, Soki M, Ingaki N (1987) Magnetic properties of ultrafine ferrite particles. J Magn Magn Mater 65:252–256CrossRefGoogle Scholar
  31. 31.
    Sahoo Y, Coodarzo A, Suihart MT, Ohulchanskyy TY, Kaur N, Furlani EP, Prasad PN (2005) Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetophoretic control. J Phys Chem B 109:3879–3885CrossRefGoogle Scholar
  32. 32.
    Singh M, Ulbrish P, Prokopec V, Svoboda P, Šantavá E, Štěpánek F (2013) Effect of hydrophobic coating on the magnetic and radiofrequency heating of γ-Fe2O3 nanoparticles. J Magn Magn Mater 339:106–113CrossRefGoogle Scholar
  33. 33.
    Chen M-J, Shen H, Li X, Rnan J, Yuan W-Q (2016) Magnetic fluids’ stability improved by oleic acid bilayer-coated structure via one-pot synthesis. Chem Papers 70:1642–1648Google Scholar
  34. 34.
    Liu ZL, Wang HB, Lu QH, Du GH, Peng L, Du YQ, Zhang SM, Yao KL (2004) Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles. J Magn Magn Mater 283:258–262CrossRefGoogle Scholar
  35. 35.
    Berger P, Adelman NB, Beckman KJ, Campell DJ, Ellis AB (1999) Preparation and properties of an aqueous ferrofluid. J Chem Edu 76:943–948CrossRefGoogle Scholar
  36. 36.
    Odenbach S (2003) Ferrofluids—magnetically controlled suspensions. Colloids Surf A Physicochem Eng Asp 217:171–178CrossRefGoogle Scholar
  37. 37.
    Soares PIP, Laia CAT, Carvalho A, Pereira LCJ, Coutinho JT, Ferreira IMM, Novo CMM, Borges JP (2016) Iron oxide nanoparticles stablized with a bilayer of oleic acid for magnetic hyperthermia and MRI application. Appl Surf Sci 383:240–247CrossRefGoogle Scholar
  38. 38.
    Granqvist CG, Buhrman RA (1976) Ultrafine metal particles. J Appl Phys 47:2200–2219CrossRefGoogle Scholar
  39. 39.
    Arulmugan R, Naidyanathan G, Sendilnathan S, Jeyadevan B (2005) Co-Zn ferrite nanoparticles for ferrofluid preparation: study on magnetic properties. Physica B 363:225–231CrossRefGoogle Scholar
  40. 40.
    Li J, Gong XM, Lin YQ, Liu XD, Chen LL, Li JM, Mao H, Li DC (2014) Investigation into loss in ferrofluid magnetization. AIP Adv 4:077123CrossRefGoogle Scholar
  41. 41.
    Taketomi S (2011) Aggregation of magnetic fluids under an external field: micelle formation: a review. Jourdan J Phys 4:1–37Google Scholar
  42. 42.
    Li J, Liu XD, Lin YQ, Huang Y, Bai L (2006) Relaxation behavior measuring of transmitted light through ferrofluids film. Appl Phys B: Laser Opt 82:81–84CrossRefGoogle Scholar
  43. 43.
    Huang Y, Li DC, Li F, Zhu QS, Xie Y (2015) Transmitted light relaxation and microstructure evolution of ferrofluids under gradient magnetic field. Opt Comm 338:551–559CrossRefGoogle Scholar
  44. 44.
    Shulyma SI, Tanygin BM, Kovalento VF, Petrychuk MV (2016) Magneto-optical extinction trend inversion in ferrofluids. J Magn Magn Mater 416:141–149CrossRefGoogle Scholar
  45. 45.
    Li J, Liu XD, Lin YQ, Qiu XY, Ma XJ, Huang Y (2004) Field–induced transmission of light in ionic ferrofluids of tunable viscosity. J Phys D Appl Phys 37:3357–3360CrossRefGoogle Scholar
  46. 46.
    Li J, Liu XD, Lin YQ, Bai L, Chen XM, Wang AR (2007) Field modulation of light transmission through ferrofluid film. Appl Phys Lett 91:253108CrossRefGoogle Scholar
  47. 47.
    Babes L, Denizot B, Tanguy G, Jeune JJL, Jallet P (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212:474–482CrossRefGoogle Scholar
  48. 48.
    Gong XM, Li J, Lin YQ, Liu XD, Chen LL, Li JM, Li DC (2014) Formation of highly crystalline maghemite nanoparticles from ferrihydrite in the liquid phase. Chin Sci Bull 59:3904–3911CrossRefGoogle Scholar
  49. 49.
    Taketomia S, Shull RD (2003) Experimental verification of interactions between randomly distributed fine magnetic particles. J Magn Magn Mater 266:207–214CrossRefGoogle Scholar
  50. 50.
    Huke B, Lücke M (2004) Magnetic properties of colloidal suspensions of interacting magnetic particles. Rep Prog Phys 36:1731–1768CrossRefGoogle Scholar
  51. 51.
    Rosensweig RE (1997) Ferrohydrodynamics. Cambridge University Press, P.33Google Scholar
  52. 52.
    Davis KJ, Wells S, Charles SW (1993) The effect of temperature and oleate adsorption on the growth of maghemite particles. J Magn Magn Mater 122:24–28CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiangshen Meng
    • 1
  • Xiaoyan Qiu
    • 1
  • Jianwei Zhao
    • 1
  • Yueqiang Lin
    • 1
  • Xiaodong Liu
    • 1
  • Decai Li
    • 2
  • Jian Li
    • 1
    Email author
  • Zhenghong He
    • 1
    Email author
  1. 1.School of Physical Science and TechnologySouthwest UniversityChongqingChina
  2. 2.State Key Laboratory of TribologyTsinghua UniversityBeijingChina

Personalised recommendations