Colloid and Polymer Science

, Volume 297, Issue 2, pp 261–269 | Cite as

A novel stimulus-responsive temozolomide supramolecular vesicle based on host–guest recognition

  • Mingfang MaEmail author
  • Lingdong Kong
  • Zhongyu Du
  • Zengyang Xie
  • Lin Chen
  • Ruijiao Chen
  • Zhenquan Li
  • Jun Liu
  • Zhaolou Li
  • Aiyou HaoEmail author
Original Contribution


Temozolomide is a potent chemotherapeutic agent for glioblastoma multiforme treatment. However, its low aqueous solubility and short half-life (only about 1.8 h) in plasm limit its clinical therapeutics. Herein, a supramolecular vesicle based on hydroxypropyl-β-cyclodextrin and temozolomide was firstly constructed by elaborate design and preparation, which can load temozolomide into membranous layer of vesicle effectively. The morphologies and diameters of this temozolomide-loaded vesicle were characterized through transmission electron microscope, scanning electron microscope, and dynamic light scattering. The possible vesicle formation mechanism was further studied by X-ray diffraction, Fourier transform infrared spectrum, ultraviolet-visible spectroscopy, 1H nuclear magnetic resonance, and 2D nuclear magnetic resonance (ROSEY). Finally, the stimulus responsiveness of this vesicle was studied. Temozolomide can be released from the membrane of the vesicle once copper ions were dropped into the vesicle solution.

Graphical abstract

Herein, a novel supramolecular vesicle based on hydroxypropyl-β-cyclodextrin and temozolomide was constructed by elaborate design and preparation, which can load temozolomide into membranous layer of vesicle effectively. Moreover, hydroxypropyl-β-cyclodextrin/temozolomide vesicles exhibit sensitive stimulus responsiveness to copper ions since vesicles will change to irregular aggregates when copper ions are added into this vesicle system.


Temozolomide Vesicle Hydroxypropyl-β-cyclodextrin Drug delivery 


Funding information

This study received financial support by the Support Funds for Teachers’ Scientific Research of Jining Medical University (NO. JYFC2018KJ045), PhD Start-up Scientific Research Foundation of Jining Medical University (NO. 2017JYQD03), National Natural Science Foundation of China (NO. 21872087), Shandong Science and Technology Development Plan (NO. 2016GGX107004), and Projects of Medical and Health Technology Development Program in Shandong Province (NO. 2017WS653).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2018_4461_MOESM1_ESM.doc (6.5 mb)
ESM 1 (DOC 6673 kb)


  1. 1.
    Patil R, Portilla-Arias J, Ding H, Inoue S, Konda B, Hu JW, Wawrowsky K, Shin P, Black K, Holler E, Ljubimova J (2010) Temozolomide delivery to tumor cells by a multifunctional nano vehicle based on poly(β-L-malic acid). Pharm Res 27:2317–2329CrossRefGoogle Scholar
  2. 2.
    Suppasansatorna P, Wang GC, Conwaya BR, Wang WD, Wang YF (2006) Skin delivery potency and antitumor activities of temozolomide ester prodrugs. Cancer Lett 244:42–52CrossRefGoogle Scholar
  3. 3.
    Zhang H, Gao S (2007) Temozolomide/PLGA microparticles and antitumor activity against glioma C6 cancer cells in vitro. Int J Pharm 329:122–128CrossRefGoogle Scholar
  4. 4.
    Rosière R, Gelbcke M, Mathieu V, Antwerpen PV, Amighi K, Wauthoz N (2015) New dry powders for inhalation containing temozolomide-based nanomicelles for improved lung cancer therapy. Int J Oncol 47:1131–1142CrossRefGoogle Scholar
  5. 5.
    Jain A, Chasoo G, Singh SK, Saxena AK, Jain SK (2011) Transferrin-appended PEGylated nanoparticles for temozolomide delivery to brain: in vitro characterisation. J Microencapsul 28:21–28CrossRefGoogle Scholar
  6. 6.
    Huang GH, Zhang N, Bi XL, Dou MJ (2008) Solid lipid nanoparticles of temozolomide: potential reduction of cardial and nephric toxicity. Int J Pharm 355:314–320CrossRefGoogle Scholar
  7. 7.
    Suppasansatorn P, Nimmannit U, Conway BR, Du LR, Wang YF (2007) Microemulsions as topical delivery vehicles for the anti-melanoma prodrug, temozolomide hexyl ester (TMZA-HE). J Pharm Pharmacol 59:787–794CrossRefGoogle Scholar
  8. 8.
    Swaminathan S, Cavalli R, Trotta F (2016) Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. WIREs Nanomed Nanobiotechnol 8:579–601CrossRefGoogle Scholar
  9. 9.
    Appel E, Rowland MJ, Loh XJ, Heywood RM, Wattsbc C, Scherman OA (2012) Enhanced stability and activity of temozolomide in primary glioblastoma multiforme cells with cucurbit [n] uril. Chem Commun 48:9843–9845CrossRefGoogle Scholar
  10. 10.
    Nordling-David MM, Yaffe R, Guez D, Meirow H, Last D, Grad E, Salomon S, Sharabi S, Levi-Kalisman Y, Golomb G, Mardor Y (2017) Liposomal temozolomide drug delivery using convection enhanced delivery. J Control Release 261:138–146CrossRefGoogle Scholar
  11. 11.
    Cao Y, Hu XY, Li Y, Zou XC, Xiong SH, Lin C, Shen YZ, Wang LY (2014) Multistimuli-responsive supramolecular vesicles based on watersoluble pillar[6] arene and SAINT complexation for controllable drug release. J Am Chem Soc 136:10762–10769CrossRefGoogle Scholar
  12. 12.
    Wang YP, Ma N, Wang ZQ, Zhang X (2007) Photocontrolled reversible supramolecular assemblies of an azobenzene-containing surfactant with a-Cyclodextrin. Angew Chem Int Ed 46:2823–2826CrossRefGoogle Scholar
  13. 13.
    Sun T, Wang QB, Bi YK, Chen XL, Liu LS, Ruan CH, Zhao ZF, Jiang C (2017) Supramolecular amphiphiles based on cyclodextrin and hydrophobic drugs. J Mater Chem B 5:2644–2654CrossRefGoogle Scholar
  14. 14.
    Xing PY, Sun T, Hao AY (2013) Vesicles from supramolecular amphiphiles. RSC Adv 3:24776–24793CrossRefGoogle Scholar
  15. 15.
    Spulber M, Najer A, Winkelbach K, Glaied O, Waser M, Pieles U, Meier W, Bruns N (2013) Photoreaction of a hydroxyalkyphenone with the membrane of Polymersomes: a versatile method to generate semipermeable nanoreactors. J Am Chem Soc 135:9204–9212CrossRefGoogle Scholar
  16. 16.
    Gao XP, Lu F, Dong B, Zhou T, Tian WF, Zheng LQ (2014) Zwitterionic vesicles with AuCl4 counterions as soft templates for the synthesis of gold nanoplates and nanospheres. Chem Commun 50:8783–8786CrossRefGoogle Scholar
  17. 17.
    Stano P, Aguanno E, Bolz J, Fahr A, Luisi P (2013) A remarkable self-organization process as the origin of primitive functional cells. Angew Chem Int Ed 52:13397–13400CrossRefGoogle Scholar
  18. 18.
    Zhang HC, Ma X, Nguyen KT, Zhao YL (2013) Biocompatible pillararene-as sembly-based carriers for dual bioimaging. ACS Nano 7:7853–7863CrossRefGoogle Scholar
  19. 19.
    Wang LG, Chierico L, Little D, Patikarnmonthon N, Yang Z, Azzouz M, Madsen J, Armes S, Battaglia G (2012) Encapsulation of biomacromolecules within polymersomes by electroporation. Angew Chem Int Ed 51:11122–11125CrossRefGoogle Scholar
  20. 20.
    Tao W, Liu Y, Jiang BB, Yu SR, Huang W, Zhou YF, Yan DY (2012) A linear-hyperbranched supramolecular amphiphile and its selfassembly into vesicles with great ductility. J Am Chem Soc 134:762–764CrossRefGoogle Scholar
  21. 21.
    Wang MF, Mohebbi AR, Sun YM, Wudl F (2012) Ribbons, vesicles, and baskets: supramolecular assembly of a coil-plate-coil emeraldicene derivative. Angew Chem Int Ed 51:6920–6924CrossRefGoogle Scholar
  22. 22.
    Wang C, Guo YS, Wang YP, Xu HP, Wang RJ, Zhang X (2009) Supramolecular amphiphiles based on a water-soluble chargetransfer complex: fabrication of ultralong nanofibers with tunable straightness. Angew Chem Int Ed 48:8962–8965CrossRefGoogle Scholar
  23. 23.
    Wang C, Yin SC, Chen SL, Xu HP, Wang ZQ, Zhang X (2008) Controlled self-assembly manipulated by charge-transfer interactions: from tubes to vesicles. Angew Chem Int Ed 47:9049–9052CrossRefGoogle Scholar
  24. 24.
    Wang YP, Han P, Xu HP, Wang ZQ, Zhang X, Kabanov AV (2010) Photocontrolled self-assembly and disassembly of block ionomer complex vesicles: a facile approach toward supramolecular polymer nanocontainers. Langmuir 26:709–715CrossRefGoogle Scholar
  25. 25.
    Li L, Rosenthal M, Zhang H, Hernandez JJ, Drechsler M, Phan KH, Rütten S, Zhu XM, Ivanov DA, Möller M (2012) Light-switchable vesicles from liquid-crystalline homopolymer-surfactant complexes. Angew Chem Int Ed 51:11616–11619CrossRefGoogle Scholar
  26. 26.
    Guo DS, Wang K, Wang YX, Liu Y (2012) Cholinesterase-responsive supramolecular vesicle. J Am Chem Soc 134:10244–10250CrossRefGoogle Scholar
  27. 27.
    Yan Q, Yuan JY, Cai ZN, Xin Y, Kang Y, Yin YW (2010) Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. J Am Chem Soc 132:9268–9270CrossRefGoogle Scholar
  28. 28.
    Duan QP, Cao Y, Li Y, Hu XY, Xiao TX, Lin C, Pan Y, Wang LY (2013) pH-responsive supramolecular vesicles based on water-soluble pillar[6] arene and ferrocene derivative for drug delivery. J Am Chem Soc 135:10542–10549CrossRefGoogle Scholar
  29. 29.
    Ma MF, Guan Y, Zhang C, Hao JC, Xing PY, Su J, Li SY, Chu XX, Hao AY (2014) Stimulus-responsive supramolecular vesicles with effective anticancer activity prepared by cyclodextrin and ftorafur. Colloids Surf A Physicochem Eng Asp 454:38–45CrossRefGoogle Scholar
  30. 30.
    Rui LL, Liu LC, Wang Y, Gao Y, Zhang WA (2016) Orthogonal approach to construct cell-like vesicles via pillar[5]arene-based amphiphilic supramolecular polymers. ACS Macro Lett 5:112–117CrossRefGoogle Scholar
  31. 31.
    Wang K, Guo DS, Wang X, Liu Y (2011) Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonatocalixarene and its controllable release of doxorubicin. ACS Nano 5:2880–2894CrossRefGoogle Scholar
  32. 32.
    Sun T, Guo Q, Zhang C, Hao JC, Xing PY, Su J, Li SY, Hao AY, Liu GC (2012) Self-assembled vesicles prepared from amphiphilic cyclodextrins as drug carriers. Langmuir 28:8625–8636CrossRefGoogle Scholar
  33. 33.
    Sun T, Yan H, Liu GC, Hao JC, Su J, Li SY, Xing PY, Hao AY (2012) Strategy of directly employing paclitaxel to construct vesicles. J Phys Chem B 116:14628–14636CrossRefGoogle Scholar
  34. 34.
    Xing PY, Chu XX, Li SY, Hou YH, Ma MF, Yang JS, Hao AY (2013) Self-recovering β-cyclodextrin gel controlled by good/poor solvent environments. RSC Adv 3:22087–22094CrossRefGoogle Scholar
  35. 35.
    Liu WQ, Samanta SK, Smith BD, Isaacs L (2017) Synthetic mimics of biotin/(strept) avidin. Chem Soc Rev 46:2391–2403CrossRefGoogle Scholar
  36. 36.
    Zhou CC, Cheng XH, Zhao Q, Yan Y, Wang JD, Huang JB (2013) Self-assembly of channel type β-CD dimers induced by dodecane. Sci Rep 4:7533–7358CrossRefGoogle Scholar
  37. 37.
    Ma MF, Su J, Sheng X, Su F, Li SY, Xing PY, Hao AY (2014) Rapid regio- and enantioselectivities and kinetic resolution of DL-lysine by an effective supramolecular system in water. J Mol Liq 198:1–4CrossRefGoogle Scholar
  38. 38.
    Xu L, Zhang WY, Cai HB, Liu F, Wang Y, Gao Y, Zhang WA (2015) Photocontrollable release and enhancement of photodynamic therapy based on host-guest supramolecular amphiphiles. J Mater Chem B 3:7417–7426CrossRefGoogle Scholar
  39. 39.
    Shen QX, Liu LC, Zhang WA (2014) Fabrication of a photocontrolled surface with switchable wettability based on host-guest inclusion complexation and protein resistance. Langmuir 30:9361–9369CrossRefGoogle Scholar
  40. 40.
    Jun SW, Kim M, Kim J, Park HJ, Lee S, Woo J, Hwang S (2007) Preparation and characterization of simvastatin/hydroxypropyl-β-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process. Eur J Pharm Biopharm 66:413–421CrossRefGoogle Scholar
  41. 41.
    Yu GC, Han CY, Zhang ZB, Chen JZ, Yan XZ, Zheng B, Liu SY, Huang FH (2012) Pillar[6]arene-based photoresponsive host-guest complexation. J Am Chem Soc 134:8711–8717CrossRefGoogle Scholar
  42. 42.
    Yu GC, Zhou XY, Zhang ZB, Han CY, Mao ZW, Gao CY, Huang FH (2012) Pillar[6]arene/paraquat molecular recognition in water: high binding strength, pH-responsiveness, and application in controllable self-assembly, controlled release, and treatment of paraquat poisoning. J Am Chem Soc 134:19489–19497CrossRefGoogle Scholar
  43. 43.
    Ma MF, Shang WQ, Xing PY, Li SY, Chu XX, Hao AY, Liu GC, Zhang YM (2015) A supramolecular vesicle of camptothecin for its water dispersion and controllable release. Carbohydr Res 402:208–214CrossRefGoogle Scholar
  44. 44.
    Yang B, Lin J, Chen Y, Liu Y (2009) Artemether/hydroxypropyl-β-cyclodextrin host-guest system: characterization, phase-solubility and inclusion mode. Bioorg Med Chem 17:6311–6317CrossRefGoogle Scholar
  45. 45.
    Li G, McGown L (1994) Molecular nanotube aggregates of β-and γ-cyclodextrins linked by diphenylhexatrienes. Science 264:249–251CrossRefGoogle Scholar
  46. 46.
    Hou XS, Ke CF, Cheng CY, Song N, Blackburn A, Sarjeant A, Botros Y, Yang YW, Stoddart JF (2014) Efficient syntheses of pillar[6]arene-based hetero[4] rotaxanes using a cooperative capture strategy. Chem Commun 50:6196–6199CrossRefGoogle Scholar
  47. 47.
    Sun T, Ma MF, Yan H, Shen J, Su J, Hao AY (2013) Vesicular particles directly assembled from the cyclodextrin/UR-144 supramolecular amphiphiles. Colloids Surf A Physicochem Eng Asp 424:105–112CrossRefGoogle Scholar
  48. 48.
    An W, Zhang HC, Sun LZ, Hao AY, Hao JC, Xin FF (2010) Reversible vesicles based on one and two head supramolecular cyclodextrin amphiphile induced by methanol. Carbohydr Res 345:914–921CrossRefGoogle Scholar
  49. 49.
    Sun HY, Bai Y, Zhao MG, Hao AY, Xu GY, Shen J, Li JY, Sun T, Zhang HC (2009) New cyclodextrin derivative 6-O-(2-hydroxybutyl)-β-cyclodextrin: preparation and its application in molecular binding and recognition. Carbohydr Res 344:1999–2004CrossRefGoogle Scholar
  50. 50.
    Wang J, Luo C, Shan CL, You QC, Lu JY, Elf S, Zhou Y, Wen Y, Vinkenborg JL, Fan J, Kang H, Lin RT, Han DL, Xie YX, Karpus J, Chen SJ, Ouyang S, Luan CH, Zhang NX, Ding H, Merkx M, Liu H, Chen J, Jiang HL, He C (2015) Inhibtion of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nat Chem 7:968–979CrossRefGoogle Scholar
  51. 51.
    Zhang Y, Swaminathan S, Tang SC, Garcia-Amoros J, Boulina M, Captain B, Baker J, Raymo FM (2015) Photoactivatable BODIPYs designed to monitor the dynamics of supramolecular nanocarriers. J Am Chem Soc 137:4709–4719CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mingfang Ma
    • 1
    Email author
  • Lingdong Kong
    • 1
  • Zhongyu Du
    • 1
  • Zengyang Xie
    • 1
  • Lin Chen
    • 1
  • Ruijiao Chen
    • 1
  • Zhenquan Li
    • 1
  • Jun Liu
    • 1
  • Zhaolou Li
    • 1
  • Aiyou Hao
    • 2
    Email author
  1. 1.Laboratory of New Antitumor Drug Molecular Design & Synthesis of Jining Medical University, College of Basic MedicineJining Medical UniversityJiningPeople’s Republic of China
  2. 2.Key Laboratory of Colloid and Interface Chemistry of Ministry of Education & School of Chemistry and Chemical EngineeringShandong UniversityJinanPeople’s Republic of China

Personalised recommendations