Colloid and Polymer Science

, Volume 293, Issue 12, pp 3499–3504 | Cite as

Synthesis of polymer/rGO/SnO2 hierarchical structure and its photodegradation of organic pollutants

  • Ying LiangEmail author
  • Shubiao Li
  • Ming Du
Original Contribution


Tin dioxide (SnO2) behaves excellent properties, but the high recombination rate of photoexcited electron–hole pairs combined with a large band gap restricts its photocatalytic applications. Comparing with pure SnO2 nanospheres, the photocatalytic degradation of rhodamine B (RhB) over polymer/reduced graphene oxide (rGO)/SnO2 composites was enhanced. For the synthesis, graphene oxide (GO) nanosheets were wrapped on the surface of polymer microspheres to form a polymer/GO core–shell structure. Then, SnO2 nanospheres were decorated on polymer/GO microspheres under a hydrothermal condition, meanwhile GO was reduced to rGO. Therefore, polymer/rGO/SnO2 hierarchical structure was obtained. As graphene promote separation of the photoexcited electron–hole pairs and the conduction band potential of SnO2 is more positive than the work function of graphene, electrons can be quickly transferred to the conduction band of SnO2 via graphene leaving over more holes on the surface of catalyst for the de-ethylation of RhB.


Graphene Tin dioxide Composite Photodegradation 



This work was supported by the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, the Fundamental Research Funds for the Central Universities (No. 222201314059), and the Training Programs of Innovation and Entrepreneurship for Undergraduates (No. S13052).


  1. 1.
    Wu HB, Hng HH, Lou XW (2012) Adv Mater 24:2567CrossRefGoogle Scholar
  2. 2.
    Xiang GL, Wang YG, Wu D, Li TY, He J, Li J, Wang X (2012) Chem Eur J 18:4759CrossRefGoogle Scholar
  3. 3.
    Harish S, Navaneethan M, Archana J, Silambarasan A, Ponnusamy S, Muthamizhchelvan C, Hayakawa Y (2015) Dalton Trans 44:10490CrossRefGoogle Scholar
  4. 4.
    Zhao XY, Liu B, Hu CW, Cao MH (2014) Chem Eur J 20:467CrossRefGoogle Scholar
  5. 5.
    Yeow SC, Ong WL, Wong ASW, Ho GW (2009) Sens Actuator B 143:295CrossRefGoogle Scholar
  6. 6.
    Renard L, Brötz J, Fuess H, Gurlo A, Riedel R, Toupance T (2014) ACS Appl Mater Interfaces 6:17093CrossRefGoogle Scholar
  7. 7.
    Renard L, Babot O, Saadaoui H, Fuess H, Brötz J, Gurlo A, Arveux E, Klein A, Toupance T (2012) Nanoscale 4:6806CrossRefGoogle Scholar
  8. 8.
    Gubbala S, Chakrapani V, Kumar V, Sunkara MK (2008) Adv Funct Mater 18:2411CrossRefGoogle Scholar
  9. 9.
    Birkel A, Lee Y-G, Koll D, Meerbeek XV, Frank S, Choi MJ, Kang YS, Char K, Tremel W (2012) Energy Environ Sci 5:5392CrossRefGoogle Scholar
  10. 10.
    Cojocaru L, Olivier C, Toupance T, Sellier E, Hirsch L (2013) J Mater Chem A 1:13789CrossRefGoogle Scholar
  11. 11.
    Dong Z, Wu M, Wu J, Ma Y, Ma Z (2015) Dalton Trans 44:11901CrossRefGoogle Scholar
  12. 12.
    Uddin MT, Nicolas Y, Olivier C, Toupance T, Servant L, Müller MM, Kleebe HJ, Ziegler J, Jaegermann W (2012) Inorg Chem 51:7764CrossRefGoogle Scholar
  13. 13.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228CrossRefGoogle Scholar
  14. 14.
    Faria AF, Martinez DST, Moraes ACM, Da Costa MEH M, Barros EB, Souza Filho AG, Paula AJ, Alves OL (2012) Chem Mater 24:4080CrossRefGoogle Scholar
  15. 15.
    Li W, Wang F, Feng SS, Wang JX, Sun ZK, Li B, Li YH, Yang JP, Elzatahry AA, Xia YY, Zhao DY (2013) J Am Chem Soc 135:18300CrossRefGoogle Scholar
  16. 16.
    Li Q, Guo BD, Yu JG, Ran JR, Zhang BH, Yan HJ, Gong JR (2011) J Am Chem Soc 133:10878CrossRefGoogle Scholar
  17. 17.
    Lee JS, You KH, Park CB (2012) Adv Mater 24:1084CrossRefGoogle Scholar
  18. 18.
    Zhang H, Lv XJ, Li YM, Wang Y, Li JH (2010) ACS Nano 4:380CrossRefGoogle Scholar
  19. 19.
    Fang R, Liang Y, Ge XP, Du M, Li SB, Li TY, Li Z (2015) Colloid Polym Sci 293:1151CrossRefGoogle Scholar
  20. 20.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4:4806CrossRefGoogle Scholar
  21. 21.
    Fang R, Ge XP, Du M, Li Z, Yang CZ, Fang B, Liang Y (2014) Colloid Polym Sci 292:985CrossRefGoogle Scholar
  22. 22.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS (2007) Carbon 45:1558CrossRefGoogle Scholar
  23. 23.
    Schwab MG, Narita A, Hernandez Y, Balandina T, Mali KS, Feyter SD, Feng XL, Müllen K (2012) J Am Chem Soc 134:18169CrossRefGoogle Scholar
  24. 24.
    Yang YF, Wang J, Zhang J, Liu JC, Yang XL, Zhao HY (2009) Langmuir 25:11808CrossRefGoogle Scholar
  25. 25.
    Wang SJ, Zhang YW, Ma HL, Zhang QL, Xu WG, Peng J, Li JQ, Yu ZZ, Zhai ML (2013) Carbon 55:245CrossRefGoogle Scholar
  26. 26.
    Ahn HJ, Choi HC, Park KW, Kim SB, Sung YE (2004) J Phys Chem B 108:9815CrossRefGoogle Scholar
  27. 27.
    Loryuenyong V, Totepvimarn K, Eimburanapravat P, Boonchompoo W, Buasri A (2013) Adv Mater Sci Eng 2013:923403CrossRefGoogle Scholar
  28. 28.
    Chen CC, Zhao W, Lei PX, Zhao JC, Serpone N (2004) Chem Eur J 10:1956CrossRefGoogle Scholar
  29. 29.
    Li WJ, Li DZ, Meng SG, Chen W, Fu XZ, Shao Y (2011) Environ Sci Technol 45:2987CrossRefGoogle Scholar
  30. 30.
    Tao WG, Chang JL, Wu DP, Gao ZY, Duan XL, Xu F, Jiang K (2013) Mater Res Bull 48:538CrossRefGoogle Scholar
  31. 31.
    Hu SW, Zhu J, Wu L, Wang XX, Liu P, Zhang YF, Li ZH (2011) J Phys Chem C 115:460CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Nuclear Technology and Application, School of ScienceEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations