Colloid and Polymer Science

, Volume 293, Issue 12, pp 3459–3469 | Cite as

Composite of acicular rod-like ZnO nanoparticles and semiconducting polypyrrole photoactive under visible light irradiation for methylene blue dye photodegradation

  • Víctor M. Ovando-MedinaEmail author
  • Raúl G. López
  • Blanca E. Castillo-Reyes
  • Pedro A. Alonso-Dávila
  • Hugo Martínez-Gutiérrez
  • Omar González-Ortega
  • Lorena Farías-Cepeda
Original Contribution


Nanoparticles of zinc oxide (ZnO) with acicular rod-like morphology were synthesized using a bicontinuous microemulsion and coated with polypyrrole (PPy), by polymerization in the presence of dioctyl sodium sulfosuccinate (AOT) surfactant with ammonium persulfate as oxidizing agent to obtain nanocomposites of ZnO/PPy. The resulting material was characterized by FTIR, Raman spectroscopy, and scanning electron microscopy. The synthesized nanocomposite consisted of ZnO nanoparticles immersed in a polypyrrole matrix with a conductivity of 6.4 × 10−6 S/cm. The synthesized nanocomposite was tested in the photodegradation of methylene blue (MB) dye under visible light irradiation resulting in photodegradation efficiency of 95.2 % after 60 min of irradiation using 3.6 g/L of nanocomposite in an aqueous solution of MB at 20 mg/L. Pseudo first-order kinetics were used to describe the photodegradation reactions.


ZnO/polypyrrole Nanocomposites Photocatalyst Visible light 



B.E. Castillo-Reyes acknowledges the scholarship from CONACYT (229857). V.M.O.M. wants to thank the Consejo Nacional de Ciencia y Tecnología—México by Grant # SEP-80843. V.M.O.M. thanks the hospitality of Dr. Farías-Cepeda at the sabbatical leave in Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila.


  1. 1.
    Rajbongshi BM, Ramchiary A, Jha BM, Samdarshi SK (2014) Synthesis and characterization of plasmonic visible active Ag/ZnO photocatalyst. J Mater Sci Mater Electron 25:2969–2973. doi: CrossRefGoogle Scholar
  2. 2.
    Senadeera GKR, Kitamura T, Wada Y, Yanagida S (2006) Enhanced photoresponses of polypyrrole on surface modified TiO2 with self-assembled monolayers. J Photochem Photobiol A 184:234–239. doi: CrossRefGoogle Scholar
  3. 3.
    Wu T, Lin T, Zhao J, Hidaka H, Serpone N (1999) TiO2-assisted photodegradation of dyes. 9. Photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation. Environ Sci Technol 33:1379–1387. doi: CrossRefGoogle Scholar
  4. 4.
    Zhong M, Li Y, Yamada I, Delaunay JJ (2012) ZnO–ZnGa2O4 core–shell nanowire array for stable photoelectrochemical water splitting. Nanoscale 4:1509–1514. doi: CrossRefGoogle Scholar
  5. 5.
    Barkade SS, Pinjari DV, Singh AK, Gogate PR, Naik JB, Sonawane SH, Ashokkumar M, Pandit AB (2013) Ultrasound assisted miniemulsion polymerization for preparation of polypyrrole–zinc oxide (PPy/ZnO) functional latex for liquefied petroleum gas sensing. Ind Eng Chem Res 52:7704–7712. doi: CrossRefGoogle Scholar
  6. 6.
    Oaki Y, Oki T, Imai K (2012) Enhanced photoconductive properties of a simple composite coaxial nanostructure of zinc oxide and polypyrrole. J Mater Chem 22:21195–21200. doi: CrossRefGoogle Scholar
  7. 7.
    de Melo EF, Alves KGB, Junior SA, de Melo CP (2013) Synthesis of fluorescent PVA/polypyrrole-ZnO nanofibers. J Mater Sci 48:3652–3658. doi: CrossRefGoogle Scholar
  8. 8.
    Wang Z, Xiao P, Qiao L, Meng X, Zhang Y, Li X, Yang F (2013) Polypyrrole sensitized ZnO nanorod arrays for efficient photo-electrochemical splitting of water. Physica B Condens Matter 419:51–56. doi: CrossRefGoogle Scholar
  9. 9.
    Lin L, Wu Q (2012) Well-aligned ZnO nanotube/polyaniline photocatalysts for enhanced photocatalytic performances. Polym Polym Compos 20:367–376Google Scholar
  10. 10.
    Olad A, Nosrati R (2012) Preparation, characterization, and photocatalytic activity of polyaniline/ZnO nanocomposite. Res Chem Intermed 38:323–336. doi: CrossRefGoogle Scholar
  11. 11.
    Khatamian M, Fazayeli M, Divband B (2014) Preparation, characterization and photocatalytic properties of polythiophene-sensitized zinc oxide hybrid nanocomposites. Mater Sci Semicond Process 26:540–547. doi: CrossRefGoogle Scholar
  12. 12.
    Romo LE, Saade H, Puente B, López ML, Betancourt R, López RG (2011) Precipitation of zinc oxide nanoparticles in bicontinuous microemulsions. J Nano Mat 2011:1–9. doi: CrossRefGoogle Scholar
  13. 13.
    Reddy AJ, Kokila MK, Nagabhushana H, Rao JL, Shivakumara C, Nagabhushana BM, Chakradhar RPS (2011) Combustion synthesis, characterization and Raman studies of ZnO nanopowders. Spectrochim Acta A 81:53–58. doi: CrossRefGoogle Scholar
  14. 14.
    Batool A, Kanwal F, Imran M, Jamil T, Siddiqi SA (2012) Synthesis of polypyrrole/zinc oxide composites and study of their structural, thermal and electrical properties. Synth Met 161:2753–2758. doi: CrossRefGoogle Scholar
  15. 15.
    Liu Y, Chu Y, Yang L (2006) Adjusting the inner-structure of polypyrrole nanoparticles through microemulsion polymerization. Mater Chem Phys 98:304–308. doi: CrossRefGoogle Scholar
  16. 16.
    González-Iñiguez JC, Ovando-Medina VM, Jasso-Gastinel CF, González DA, Puig JE, Mendizábal E (2014) Synthesis of polypyrrole nanoparticles by batch and semicontinuous heterophase polymerizations. Colloid Polym Sci 292:1269–1275. doi: CrossRefGoogle Scholar
  17. 17.
    Ovando-Medina VM, Peralta RD, Mendizábal E, Martínez-Gutiérrez H, Lara-Ceniceros T, Ledezma-Rodríguez R (2011) Synthesis of polypyrrole nanoparticles by oil-in-water microemulsion polymerization with narrow size distribution. Colloid Polym Sci 289:759–765. doi: CrossRefGoogle Scholar
  18. 18.
    Choi J, Kim H, Haam S, Lee SY (2010) Effects of reaction sequence on the colloidal polypyrrole nanostructures and conductivity. J Disp Sci Tech 31:743–749. doi: CrossRefGoogle Scholar
  19. 19.
    Ovando-Medina VM, Diaz-Flores PE, Martínez-Gutiérrez H, Moreno-Ruiz LA, Antonio-Carmona ID, Hernández-Ordoñez M (2014) Composite of cellulosic agricultural waste coated with semiconducting polypyrrole as potential dye remover. Polym Compos 35:186–193. doi: CrossRefGoogle Scholar
  20. 20.
    Wang D, Wang Y, Li X, Luo Q, An J, Yue J (2008) Sunlight photocatalytic activity of polypyrrole–TiO2 nanocomposites prepared by ‘in situ’ method. Catal Commun 9:1162–1166. doi: CrossRefGoogle Scholar
  21. 21.
    Liao Y, Brame J, Que W, Xiu Z, Xie H, Li Q, Fabian M, Alvarez PJ (2013) Photocatalytic generation of multiple ROS types using low-temperature crystallized anodic TiO2 nanotube arrays. J Hazard Mat 260:434–441. doi: CrossRefGoogle Scholar
  22. 22.
    Habib MA, Muslim M, Shahadat MT, Islam MN, Ismail IMI, Islam TSA, Mahmood AJ (2013) Photocatalytic decolorization of crystal violet in aqueous nano-ZnO suspension under visible light irradiation. J Nanostructure Chem 3:1–10. doi: CrossRefGoogle Scholar
  23. 23.
    Montazerozohori M, Nasr-Esfahani M, Joohari S (2012) Photocatalytic degradation of an organic dye in some aqueous buffer solutions using nano titanium dioxide: a kinetic study. Environ Prot Eng 38:45–55. doi: Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Víctor M. Ovando-Medina
    • 1
    Email author
  • Raúl G. López
    • 2
  • Blanca E. Castillo-Reyes
    • 3
  • Pedro A. Alonso-Dávila
    • 3
  • Hugo Martínez-Gutiérrez
    • 4
  • Omar González-Ortega
    • 3
  • Lorena Farías-Cepeda
    • 5
  1. 1.Ingeniería Química, Coordinación Académica Región Altiplano (COARA)Universidad Autónoma de San Luis Potosí, Carretera a Cedral KM 5+600MatehualaMexico
  2. 2.Centro de Investigación en Química AplicadaSaltilloMexico
  3. 3.Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis Potosí. Av. Dr. Manuel Nava No.6, Zona UniversitariaSan Luis PotosíMexico
  4. 4.Centro de Nanociencias y micro y nanotecnologíasInstituto Politécnico NacionalLuis Enrique Erro S/NMexico
  5. 5.Departamento de Ingeniería Química, Facultad de Ciencias QuímicasUniversidad Autónoma de CoahuilaSaltilloMexico

Personalised recommendations