Advertisement

Colloid and Polymer Science

, Volume 293, Issue 12, pp 3527–3531 | Cite as

Super-gelator formation based on 4,4′-oxybisbenzenamine derivative

  • Aiping GaoEmail author
  • Na Zhao
  • Qiuli Cheng
  • Ruxue Xu
  • Jinshuang Wang
  • Xinhua CaoEmail author
Original Contribution

Abstract

In this work, a new gelator containing 4,4′-oxybisbenzenamine and two cholesterol group was synthesized which could form a super-gel in DMF with the critical gelation concentration of 0.18 wt.%. The self-assembly structure and the formation mechanism had been studied and certified by field emission scanning electron microscopy, UV–vis, IR, XRD and structure surface wetting experiment data. The nanofibre structure was obtained with the contact angle of 135°. The “H-aggregate” self-assembly mode was adopted in organogel system. H-bonding and π–π stacking were the main driving force for the organogel formation.

Keywords

Super-gel Self-assembly Cholesterol group Non-covalent interaction Hydrophobicity 

Notes

Acknowledgement

The authors gratefully acknowledge Prof. Tao Yi of Fudan University for partial experimental support and research fellowships.

Funding

This work was supported by the National Natural Science Foundation of China (21401159), the program for University Innovative Research Team of Henan (2012IRTSHN017, 15IRTSTHN001), and the development projects of Henan Province Science and Technology (132300410090), a project supported by the Youth Sustentation Fund of Xinyang Normal University (2014-QN-053).

References

  1. 1.
    Babu SS, Praveen VK, Ajayaghosh A (2014) Chem Rev 114:1973–2129CrossRefGoogle Scholar
  2. 2.
    Segarra-Maset MD, Nebot VJ, Miravet JF, Escuder B (2013) Chem Soc Rev 42:7086–7098CrossRefGoogle Scholar
  3. 3.
    Tomasini C, Castellucci N (2013) Chem Soc Rev 42:156–172CrossRefGoogle Scholar
  4. 4.
    Wei PF, Yan XZ, Huang FH (2015) Chem Soc Rev 44:815–832CrossRefGoogle Scholar
  5. 5.
    Dawn A, Shiraki T, Haraguchi S, Tamaru S, Shinkai S (2011) Chem Asian J 6:266–282CrossRefGoogle Scholar
  6. 6.
    Babu SS, Prasanthkumar S, Ajayaghosh A (2012) Angew Chem Int Ed 51:1766–1776CrossRefGoogle Scholar
  7. 7.
    Praveen VK, Ranjith C, Armaroli N (2014) Angew Chem Int Ed 53:365–368CrossRefGoogle Scholar
  8. 8.
    Kartha KK, Sandeep A, Praveen VK, Ajayaghosh A (2015) Chem Rec 15:252–265CrossRefGoogle Scholar
  9. 9.
    Kartha KK, Babu SS, Srinivasan S, Ajayaghosh AJ (2012) Am Chem Soc 134:4834–4841CrossRefGoogle Scholar
  10. 10.
    Terech P, Weiss RG (1997) Chem Rev 97:3133–3159CrossRefGoogle Scholar
  11. 11.
    Estroff LA, Hamilton AD (2004) Chem Rev 104:1201–1218CrossRefGoogle Scholar
  12. 12.
    Miyamura Y, Kinbara K, Yamamoto Y, Praveen VK, Kato K, Takata M, Takano A, Matsushita Y, Lee E, Lee M, Aida T (2010) J Am Chem Soc 132:3292–3294CrossRefGoogle Scholar
  13. 13.
    Aida T, Meijer EW, Stupp SI (2012) Science 335:813–817CrossRefGoogle Scholar
  14. 14.
    Cao XH, Gao AP, Lv HT, Wu Y, Wang XX, Fan Y (2013) Org Biomol Chem 11:7931–7937CrossRefGoogle Scholar
  15. 15.
    Chen G, Jiang M (2011) Chem Soc Rev 40:2254–2266CrossRefGoogle Scholar
  16. 16.
    Cao XH, Meng LY, Li ZH, Mao YY, Lan HC, Chen LM, Fan Y, Yi T (2014) Langmuir 30:11753–11760CrossRefGoogle Scholar
  17. 17.
    Fan Y, Yang ZJ, Zhang X, Cao XH (2013) Supra Chem 25:441–445CrossRefGoogle Scholar
  18. 18.
    Trivedi D, Ballabh RA, Dastidar P (2003) Cryst Eng Comm 5:358–367CrossRefGoogle Scholar
  19. 19.
    Cao XH, Zhang TT, Gao AP, Li KL, Cheng QL, Song LJ, Zhang M (2014) Org Biomol Chem 12:6399–6405CrossRefGoogle Scholar
  20. 20.
    Cui J, Zheng Y, Shen Z, Wan X (2010) Langmuir 26:15508–15515CrossRefGoogle Scholar
  21. 21.
    Yan N, He G, Zhang H, Ding L, Fang Y (2010) Langmuir 26:5909–5917CrossRefGoogle Scholar
  22. 22.
    Wu JC, Yi T, Shu TM, Yu MX, Zho ZG, Xu M, Zhou YF, Zhang HJ, Han JT, Li FY, Huang CH (2008) Angew Chem Int Ed 47:1063–1067CrossRefGoogle Scholar
  23. 23.
    Zhang MM, Meng LY, Cao XH, Jiang MJ, Yi T (2012) Soft Matter 8:4494–4498CrossRefGoogle Scholar
  24. 24.
    Zhang MM, Sun ST, Yu XD, Cao XH, Zou Y, Yi T (2010) Chem Commun 46:3553–3555CrossRefGoogle Scholar
  25. 25.
    George M, Weiss RG (2006) Acc Chem Res 39:489–497CrossRefGoogle Scholar
  26. 26.
    Ajayaghosh A, Vijayakumar C, Varghese R, George SJ (2006) Angew Chem Int Ed 45:456–460CrossRefGoogle Scholar
  27. 27.
    Liu J, He PL, Yan JL, Fang XH, Peng JX, Liu KQ, Yu F (2008) Adv Mater 20:2508–2511CrossRefGoogle Scholar
  28. 28.
    Liang G, Yang ZM, Zhang RJ, Li LH, Fan YJ, Kuang Y, Gao Y, Wang T, Lu WW, Xu B (2009) Langmuir 25:8414–8418CrossRefGoogle Scholar
  29. 29.
    Wu JC, Yi T, Xia Q, Zou Y, Liu F, Dong J, Shu TM, Li FY, Huang CH (2009) Chem Eur J 15:6234–6243CrossRefGoogle Scholar
  30. 30.
    Luboradzki R, Gronwald O, Ikeda A, Shinkai S (2000) Chem Lett 29:1148–1149CrossRefGoogle Scholar
  31. 31.
    Gopal A, Varghese R, Ajayaghosh A (2012) Chem Asian J 7:2061–2067CrossRefGoogle Scholar
  32. 32.
    Duan PF, Qin L, Zhu XF, Liu MH (2011) Chem Eur J 17:6389–6395CrossRefGoogle Scholar
  33. 33.
    Jun YS, Lee EZ, Wang X, Hong W, Stucky GD, Thomas A (2013) Adv Funct Mater 23:3661–3667CrossRefGoogle Scholar
  34. 34.
    Zabula AV, Spisak SN, Filatov AS, Petrukhina MA (2012) Angew Chem Int Ed 51:12194–12198CrossRefGoogle Scholar
  35. 35.
    Yu Y, Shi Q, Li Y, Liu T, Zhang L, Shuai Z, Li Y (2012) Chem Asian J 7:2904–2911CrossRefGoogle Scholar
  36. 36.
    Yagai S, Gushiken M, Karatsu T, Kitamura A, Kikkawa Y (2011) Chem Commun 47:454–456CrossRefGoogle Scholar
  37. 37.
    Sun T, Feng L, Gao X, Jiang L (2005) Acc Chem Res 38:644–652CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringXinyang Normal UniversityXinyangPeople’s Republic of China

Personalised recommendations