Advertisement

Basic Research in Cardiology

, 114:41 | Cite as

Carotid baroreceptor stimulation suppresses ventricular fibrillation in canines with chronic heart failure

  • Jing Wang
  • Mingyan Dai
  • Quan Cao
  • Qiao Yu
  • Qiang Luo
  • Ling Shu
  • Yijie Zhang
  • Mingwei BaoEmail author
Original Contribution
  • 61 Downloads

Abstract

Carotid baroreceptor stimulation (CBS) has been shown to improve cardiac dysfunction and pathological structure remodelling. This study aimed to investigate the effects of CBS on the ventricular electrophysiological properties in canines with chronic heart failure (CHF). Thirty-eight beagles were randomized into control (CON), CHF, low-level CBS (LL-CBS), and moderate-level CBS (ML-CBS) groups. The CHF model was established with 6 weeks of rapid right ventricular pacing (RVP), and concomitant LL-CBS and ML-CBS were applied in the LL-CBS and ML-CBS groups, respectively. After 6 weeks of RVP, ventricular electrophysiological parameters and left stellate ganglion (LSG) neural activity and function were measured. Autonomic neural remodelling in the LSG and left ventricle (LV) and ionic remodelling in the LV were detected. Compared with the CHF group, both LL-CBS and ML-CBS decreased spatial dispersion of action potential duration (APD), suppressed APD alternans, reduced ventricular fibrillation (VF) inducibility, and inhibited enhanced LSG neural discharge and function. Only ML-CBS significantly inhibited ventricular repolarization prolongation and increased the VF threshold. Moreover, ML-CBS inhibited the increase in growth-associated protein-43 and tyrosine hydroxylase-positive nerve fibre densities in LV, increased acetylcholinesterase protein expression in LSG, and decreased nerve growth factor protein expression in LSG and LV. Chronic RVP resulted in a remarkable reduction in protein expression encoding both potassium and L-type calcium currents; these changes were partly amended by ML-CBS and LL-CBS. In conclusion, CBS suppresses VF in CHF canines, potentially by modulating autonomic nerve and ion channels. In addition, the effects of ML-CBS on ventricular electrophysiological properties, autonomic remodelling, and ionic remodelling were superior to those of LL-CBS.

Keywords

Carotid baroreceptor stimulation Ventricular arrhythmias Left stellate ganglion Autonomic remodelling Ionic remodelling 

Notes

Acknowledgements

The authors are grateful for kind support from Dan Hu1,2,3, Yanhong Tang1,2,3, Xi Wang1,2,3 and Teng Wang1,2,3 (1Renmin Hospital of Wuhan University; 2Cardiovascular Research Institute, Wuhan University; 3Hubei Key Laboratory of Cardiology, Wuhan, China). This work was supported by the National Natural Science Foundation of China [Grant numbers 81570460, 81770507, 81700443]; the Health and Family Planning Commission Key Support Project of Hubei Province [Grant number WJ2017Z003], and the Fundamental Research Funds for the Central Universities [Grant number 2042017kf0064].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Aflaki M, Qi XY, Xiao L, Ordog B, Tadevosyan A, Luo X, Maguy A, Shi Y, Tardif JC, Nattel S (2014) Exchange protein directly activated by cAMP mediates slow delayed-rectifier current remodeling by sustained beta-adrenergic activation in guinea pig hearts. Circ Res 114:993–1003.  https://doi.org/10.1161/CIRCRESAHA.113.302982 CrossRefPubMedGoogle Scholar
  2. 2.
    Ajijola OA, Lellouche N, Bourke T, Tung R, Ahn S, Mahajan A, Shivkumar K (2012) Bilateral cardiac sympathetic denervation for the management of electrical storm. J Am Coll Cardiol 59:91–92.  https://doi.org/10.1016/j.jacc.2011.09.043 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ajijola OA, Wisco JJ, Lambert HW, Mahajan A, Stark E, Fishbein MC, Shivkumar K (2012) Extracardiac neural remodeling in humans with cardiomyopathy. Circ Arrhythm Electrophysiol 5:1010–1116.  https://doi.org/10.1161/CIRCEP.112.972836 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bourke T, Vaseghi M, Michowitz Y, Sankhla V, Shah M, Swapna N, Boyle NG, Mahajan A, Narasimhan C, Lokhandwala Y, Shivkumar K (2010) Neuraxial modulation for refractory ventricular arrhythmias. Circulation 121:2255–2262.  https://doi.org/10.1161/CIRCULATIONAHA.109.929703 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cao JM, Fishbein MC, Han JB, Lai WW, Lai AC, Wu TJ, Czer L, Wolf PL, Denton TA, Shintaku IP, Chen PS, Chen LS (2000) Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 101:1960–1969.  https://doi.org/10.1161/01.CIR.101.16.1960 CrossRefPubMedGoogle Scholar
  6. 6.
    Cha Y, Redfield MM, Shah S, Shen W, Fishbein MC, Chen P (2005) Effects of omapatrilat on cardiac nerve sprouting and structural remodeling in experimental congestive heart failure. Heart Rhythm 2:984–990.  https://doi.org/10.1016/j.hrthm.2005.05.016 CrossRefPubMedGoogle Scholar
  7. 7.
    Chen PS, Chen LS, Cao JM, Sharifi B, Karagueuzian HS, Fishbein MC (2001) Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res 50:409–416.  https://doi.org/10.1016/S0008-6363(00)00308-4 CrossRefPubMedGoogle Scholar
  8. 8.
    Cho H, Barth AS, Tomaselli GF (2012) Basic science of cardiac resynchronization therapy: molecular and electrophysiological mechanisms. Circ Arrhythm Electrophysiol 5:594–603.  https://doi.org/10.1161/CIRCEP.111.962746 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dai M, Bao M, Zhang Y, Yu L, Cao Q, Tang Y, Huang H, Wang X, Hu D, Huang C (2016) Low-level carotid baroreflex stimulation suppresses atrial fibrillation by inhibiting left stellate ganglion activity in an acute canine model. Heart Rhythm 13:2203–2212.  https://doi.org/10.1016/j.hrthm.2016.08.021 CrossRefPubMedGoogle Scholar
  10. 10.
    de Jong S, van Veen TA, van Rijen HV, de Bakker JM (2011) Fibrosis and cardiac arrhythmias. J Cardiovasc Pharmacol 57:630–638.  https://doi.org/10.1097/FJC.0b013e318207a35f CrossRefPubMedGoogle Scholar
  11. 11.
    de Leeuw PW, Bisognano JD, Bakris GL, Nadim MK, Haller H, Kroon AA (2017) Sustained reduction of blood pressure with baroreceptor activation therapy: results of the 6-Year open follow-up. Hypertension 69:836–843.  https://doi.org/10.1161/HYPERTENSIONAHA.117.09086 CrossRefPubMedGoogle Scholar
  12. 12.
    Ebinger MW, Krishnan S, Schuger CD (2005) Mechanisms of ventricular arrhythmias in heart failure. Curr Heart Fail Rep 2:111–117.  https://doi.org/10.1007/s11897-005-0018-y CrossRefPubMedGoogle Scholar
  13. 13.
    Gardner RT, Ripplinger CM, Myles RC, Habecker BA, Gardner RT, Ripplinger CM, Myles RC, Habecker BA (2016) Molecular mechanisms of sympathetic remodeling and arrhythmias. Circ Arrhythm Electrophysiol 9:e1359.  https://doi.org/10.1161/CIRCEP.115.001359 CrossRefGoogle Scholar
  14. 14.
    Govoni S, Pascale A, Amadio M, Calvillo L, Elia E D, Cereda C, Fantucci P, Ceroni M, Vanoli E (2011) NGF and heart: is there a role in heart disease? Pharmacol Res 63:266–277.  https://doi.org/10.1016/j.phrs.2010.12.017 CrossRefPubMedGoogle Scholar
  15. 15.
    Heusch G (2017) Vagal cardioprotection in reperfused acute myocardial infarction. JACC Cardiovasc Interv 10:1521–1522.  https://doi.org/10.1016/j.jcin.2017.05.063 CrossRefPubMedGoogle Scholar
  16. 16.
    Hou Y, Zhou Q, Po SS (2016) Neuromodulation for cardiac arrhythmia. Heart Rhythm 13:584–592.  https://doi.org/10.1016/j.hrthm.2015.10.001 CrossRefPubMedGoogle Scholar
  17. 17.
    Iliescu R, Tudorancea I, Lohmeier TE, Iliescu R, Tudorancea I, Lohmeier TE (2014) Baroreflex activation: from mechanisms to therapy for cardiovascular disease. Curr Hypertens Rep 16:453.  https://doi.org/10.1007/s11906-014-0453-9 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Koumi S, Backer CL, Arentzen CE, Sato R (1995) beta-Adrenergic modulation of the inwardly rectifying potassium channel in isolated human ventricular myocytes. Alteration in channel response to beta-adrenergic stimulation in failing human hearts. J Clin Invest 96:2870–2881.  https://doi.org/10.1172/JCI118358 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kober L, Thune JJ, Nielsen JC, Haarbo J, Videbaek L, Korup E, Jensen G, Hildebrandt P, Steffensen FH, Bruun NE, Eiskjaer H, Brandes A, Thogersen AM, Gustafsson F, Egstrup K, Videbaek R, Hassager C, Svendsen JH, Hofsten DE, Torp-Pedersen C, Pehrson S (2016) Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med 375:1221–1230.  https://doi.org/10.1056/NEJMoa1608029 CrossRefPubMedGoogle Scholar
  20. 20.
    La Rovere MT, Bigger JJ, Marcus FI, Mortara A, Schwartz PJ (1998) Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 351:478–484.  https://doi.org/10.1016/s0140-6736(97)11144-8 CrossRefPubMedGoogle Scholar
  21. 21.
    Li GR, Lau CP, Ducharme A, Tardif JC, Nattel S (2002) Transmural action potential and ionic current remodeling in ventricles of failing canine hearts. Am J Physiol Heart Circ Physiol 283:H1031–H1104.  https://doi.org/10.1152/ajpheart.00105.2002 CrossRefPubMedGoogle Scholar
  22. 22.
    Linz D, Mahfoud F, Schotten U, Ukena C, Neuberger HR, Wirth K, Bohm M (2013) Effects of electrical stimulation of carotid baroreflex and renal denervation on atrial electrophysiology. J Cardiovasc Electrophysiol 24:1028–1033.  https://doi.org/10.1111/jce.12171 CrossRefPubMedGoogle Scholar
  23. 23.
    Lip GYH, Heinzel FR, Gaita F, Juanatey JRG, Le Heuzey JY, Potpara T, Svendsen JH, Vos MA, Anker SD, Coats AJ, Haverkamp W, Manolis AS, Chung MK, Sanders P, Pieske B (2015) European Heart Rhythm Association/Heart Failure Association joint consensus document on arrhythmias in heart failure, endorsed by the Heart Rhythm Society and the Asia Pacific Heart Rhythm Society. Eur J Heart Fail 17:848–874.  https://doi.org/10.1002/ejhf.338/full CrossRefPubMedGoogle Scholar
  24. 24.
    Lohmeier TE, Irwin ED, Rossing MA, Serdar DJ, Kieval RS (2004) Prolonged activation of the baroreflex produces sustained hypotension. Hypertension 43:306–311.  https://doi.org/10.1161/HYPERTENSIONAHA.107.087874 CrossRefPubMedGoogle Scholar
  25. 25.
    Luther JA, Birren SJ (2009) p75 and TrkA signaling regulates sympathetic neuronal firing patterns via differential modulation of voltage-gated currents. J Neurosci 29:5411–5424.  https://doi.org/10.1523/JNEUROSCI.3503-08.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Meng L, Shivkumar K, Ajijola O (2018) Autonomic regulation and ventricular arrhythmias. Curr Treat Options Cardiovasc Med 20:38.  https://doi.org/10.1007/s11936-018-0633-z CrossRefPubMedGoogle Scholar
  27. 27.
    Nattel S, Maguy A, Le Bouter S, Yeh Y (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87:425–456.  https://doi.org/10.1152/physrev.00014.2006 CrossRefPubMedGoogle Scholar
  28. 28.
    Pak PH, Nuss HB, Tunin RS, Kääb S, Tomaselli GF, Marban E, Kass DA (1997) Repolarization abnormalities, arrhythmia and sudden death in canine tachycardia-induced cardiomyopathy. J Am Coll Cardiol 30:576–584.  https://doi.org/10.1016/S0735-1097(97)00193-9 CrossRefPubMedGoogle Scholar
  29. 29.
    Rana OR, Schauerte P, Hommes D, Schwinger RHG, Schröder JW, Hoffmann R, Saygili E (2010) Mechanical stretch induces nerve sprouting in rat sympathetic neurocytes. Auton Neurosci 155:25–32.  https://doi.org/10.1016/j.autneu.2010.01.003 CrossRefPubMedGoogle Scholar
  30. 30.
    Sabbah HN (2012) Baroreflex activation for the treatment of heart failure. Curr Cardiol Rep 14:326–333.  https://doi.org/10.1007/s11886-012-0265-y CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Scherlag BJ, Kabell G, Harrison L, Lazzara R (1982) Mechanisms of bradycardia-induced ventricular arrhythmias in myocardial ischemia and infarction. Circulation 65:1429–1434.  https://doi.org/10.1161/01.cir.65.7.1429 CrossRefPubMedGoogle Scholar
  32. 32.
    Shalaby AA, El-Saed A, Nemec J, Moossy JJ, Balzer JR (2007) Exacerbation of electrical storm subsequent to implantation of a right vagal stimulator. Clin Auton Res 17:385–390.  https://doi.org/10.1007/s10286-007-0440-1 CrossRefPubMedGoogle Scholar
  33. 33.
    Shen MJ, Hao-Che C, Park HW, George AA, Chang PC, Zheng Z, Lin SF, Shen C, Chen LS, Chen Z, Fishbein hMC, Chiamvimonvat N, Chen PS (2013) Low-level vagus nerve stimulation upregulates small conductance calcium-activated potassium channels in the stellate ganglion. Heart Rhythm 10:910–915.  https://doi.org/10.1016/j.hrthm.2013.01.029 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Shen MJ, Shinohara T, Park HW, Frick K, Ice DS, Choi EK, Han S, Maruyama M, Sharma R, Shen C, Fishbein MC, Chen LS, Lopshire JC, Zipes DP, Lin SF, Chen PS (2011) Continuous low-level vagus nerve stimulation reduces stellate ganglion nerve activity and paroxysmal atrial tachyarrhythmias in ambulatory canines. Circulation 123:2204–2212.  https://doi.org/10.1161/CIRCULATIONAHA.111.018028 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Stambler BS (2006) Tachycardia-induced ventricular electrical remodeling: a perspective on unresolved experimental mechanisms and clinical implications. Heart Rhythm 3:1378–1381.  https://doi.org/10.1016/j.hrthm.2006.06.008 CrossRefPubMedGoogle Scholar
  36. 36.
    Swissa M, Zhou S, Gonzalez-Gomez I, Chang C, Lai AC, Cates AW, Fishbein MC, Karagueuzian HS, Chen P, Chen LS (2004) Long-term subthreshold electrical stimulation of the left stellate ganglion and a canine model of sudden cardiac death. J Am Coll Cardiol 43:858–864.  https://doi.org/10.1016/j.jacc.2003.07.053 CrossRefPubMedGoogle Scholar
  37. 37.
    Takahashi N, Ito M, Ishida S, Fujino T, Saikawa T, Arita M (1992) Effects of vagal stimulation on cesium-induced early afterdepolarizations and ventricular arrhythmias in rabbits. Circulation 86:1987–1992.  https://doi.org/10.1161/01.cir.86.6.1987 CrossRefPubMedGoogle Scholar
  38. 38.
    Thuringer D, Deroubaix E, Coulombe A, Coraboeuf E, Mercadier JJ (1996) Ionic basis of the action potential prolongation in ventricular myocytes from Syrian hamsters with dilated cardiomyopathy. Cardiovasc Res 31:747–775.  https://doi.org/10.1016/S0008-6363(96)00018-1 CrossRefPubMedGoogle Scholar
  39. 39.
    Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J (2009) The sympathetic nervous system in heart failure. J Am Coll Cardiol 54:1747–1762.  https://doi.org/10.1016/j.jacc.2009.05.015 CrossRefPubMedGoogle Scholar
  40. 40.
    Tsuji Y, Opthof T, Kamiya K, Yasui K, Liu W, Lu Z, Kodama I (2000) Pacing-induced heart failure causes a reduction of delayed rectifier potassium currents along with decreases in calcium and transient outward currents in rabbit ventricle. Cardiovasc Res 48:300–309.  https://doi.org/10.1016/S0008-6363(00)00180-2 CrossRefPubMedGoogle Scholar
  41. 41.
    van der Heyden MA, Wijnhoven TJ, Opthof T (2006) Molecular aspects of adrenergic modulation of the transient outward current. Cardiovasc Res 71:430–442.  https://doi.org/10.1016/j.cardiores.2006.04.012 CrossRefPubMedGoogle Scholar
  42. 42.
    Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SJ, Foreman RD, Schwartz PJ (1991) Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res 68:1471–1481.  https://doi.org/10.1161/01.res.68.5.1471 CrossRefPubMedGoogle Scholar
  43. 43.
    Wang J, Yu Q, Dai M, Zhang Y, Cao Q, Luo Q, Tan T, Zhou Y, Shu L, Bao M (2019) Carotid baroreceptor stimulation improves cardiac performance and reverses ventricular remodelling in canines with pacing-induced heart failure. Life Sci 222:13–21.  https://doi.org/10.1016/j.lfs.2019.02.047 CrossRefPubMedGoogle Scholar
  44. 44.
    Wang M, Zaca V, Jiang A, Ilsar I, Ebinger M, Sabbah MS, Dye K, Schuger C, Sabbah HN (2008) Long term baroreflex activation therapy increases the threshold for the induction of lethal ventricular arrhythmias in dogs with chronic advanced heart failure. Circulation 118:S722CrossRefGoogle Scholar
  45. 45.
    Yu L, Huang B, Po SS, Tan T, Wang M, Zhou L, Meng G, Yuan S, Zhou X, Li X, Wang Z, Wang S, Jiang H (2017) Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with st-segment elevation myocardial infarction: a proof-of-concept study. JACC Cardiovasc Interv 10:1511–1520.  https://doi.org/10.1016/j.jcin.2017.04.036 CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang Y, Mazgalev TN (2011) Arrhythmias and vagus nerve stimulation. Heart Fail Rev 16:147–161.  https://doi.org/10.1007/s10741-010-9178-2 CrossRefPubMedGoogle Scholar
  47. 47.
    Zheng C, Li M, Inagaki M, Kawada T, Sunagawa K, Sugimachi M (2005) Vagal stimulation markedly suppresses arrhythmias in conscious rats with chronic heart failure after myocardial infarction. Conf Proc IEEE Eng Med Biol Soc 7:7072–7075.  https://doi.org/10.1109/IEMBS.2005.1616135 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jing Wang
    • 1
    • 2
    • 3
  • Mingyan Dai
    • 1
    • 2
    • 3
  • Quan Cao
    • 1
    • 2
    • 3
  • Qiao Yu
    • 1
    • 2
    • 3
  • Qiang Luo
    • 1
    • 2
    • 3
  • Ling Shu
    • 1
    • 2
    • 3
  • Yijie Zhang
    • 1
    • 2
    • 3
  • Mingwei Bao
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPeople’s Republic of China
  2. 2.Cardiovascular Research InstituteWuhan UniversityWuhanPeople’s Republic of China
  3. 3.Hubei Key Laboratory of CardiologyWuhanPeople’s Republic of China

Personalised recommendations