Advertisement

Calpains mediate isoproterenol-induced hypertrophy through modulation of GRK2

  • David Aluja
  • Javier InserteEmail author
  • Petronila Penela
  • Paula Ramos
  • Catalina Ribas
  • Miguel Ángel Iñiguez
  • Federico MayorJr.
  • David Garcia-Dorado
Original Contribution

Abstract

Inhibition of the Ca2+-dependent proteases calpains attenuates post-infarction remodeling and heart failure. Recent data suggest that calpain activity is elevated in non-ischemic cardiomyopathies and that upregulation of the key cardiac G-protein-coupled receptor kinase 2 (GRK2) signaling hub promotes cardiac hypertrophy. However, the functional interactions between calpains and GRK2 in this context have not been explored. We hypothesized that calpain modulates GRK2 levels in myocardial hypertrophy of non-ischemic cause, and analyzed the mechanisms involved and the potential therapeutic benefit of inhibiting calpain activity in this situation. The oral calpain inhibitor SNJ-1945 was administered daily to male Sprague–Dawley rats or wild-type and hemizygous GRK2 mice treated with 5 mg/Kg/day isoproterenol intraperitoneally for 1 week. In isoproterenol-treated animals, calpains 1 and 2 were overexpressed in myocardium and correlated with increased calpain activity and ventricular hypertrophy. Oral co-administration of SNJ-1945 attenuated calpain activation and reduced heart hypertrophy as assessed using morphological and biochemical markers. Calpain activation induced by isoproterenol increased GRK2 protein levels, while genetic downregulation of GRK2 expression prevented isoproterenol-mediated hypertrophy independently of calpain inhibition. GRK2 upregulation was associated to calpain-dependent degradation of the GRK2 ubiquitin ligase MDM2 and to enhanced NF-κB-dependent GRK2 gene expression in correlation with calpain-mediated IĸB proteolysis. These results demonstrate that calpain mediates isoproterenol-induced myocardial hypertrophy by modulating GRK2 protein content through mechanisms involving the control of GRK2 stability and expression. Sustained calpain inhibition attenuates isoproterenol-induced myocardial hypertrophy and could be an effective therapeutic strategy to limit ventricular remodeling of non-ischemic origin.

Keywords

Calpain Hypertrophy GRK2 Isoproterenol 

Notes

Funding

This study was supported by Instituto de Salud Carlos III, Spain [PI-16/00232; RETICS-RIC-RD12/0042/0021 to D.G.D., co-funded with European Regional Development Fund-FEDER contribution], by Ministerio de Economía; Industria y Competitividad (MINECO) of Spain [SAF2017-84125-R to F.M.]; by CIBERCV-Instituto de Salud Carlos III, Spain [CB16/11/00479 to D.G.D. and CB16/11/00278 to F.M, co-funded with European Regional Development Fund-FEDER contribution], and Programa de Actividades en Biomedicina de la Comunidad de Madrid-B2017/BMD-3671-INFLAMUNE to F.M. We also acknowledge institutional support to the CBMSO from Fundación Ramón Areces. D.A. is a recipient of a VHIR predoctoral grant.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Arthur GD, Belcastro AN (1997) A calcium stimulated cysteine protease involved in isoproterenol induced cardiac hypertrophy. Mol Cell Biochem 176:241–248CrossRefGoogle Scholar
  2. 2.
    Bermejo M, Martin-Serrano J, Oberlin E, Pedraza MA, Serrano A, Santiago B, Caruz A, Loetscher P, Baggiolini M, Arenzana-Seisdedos F, Alcami J (1998) Activation of blood T lymphocytes down-regulates CXCR4 expression and interferes with propagation of X4 HIV strains. Eur J Immunol 28:3192–3204.  https://doi.org/10.1002/(SICI)1521-4141(199810)28:10%3c3192:AID-IMMU3192%3e3.0.CO;2-E CrossRefPubMedGoogle Scholar
  3. 3.
    Bhuiyan MS, Shioda N, Fukunaga K (2009) Chronic beta-AR activation-induced calpain activation and impaired eNOS-Akt signaling mediates cardiac injury in ovariectomized female rats. Expert Opin Ther Targets 13:275–286.  https://doi.org/10.1517/14728220902721312 CrossRefPubMedGoogle Scholar
  4. 4.
    Cao T, Fan S, Zheng D, Wang G, Yu Y, Chen R, Song LS, Fan GC, Zhang Z, Peng T (2019) Increased calpain-1 in mitochondria induces dilated heart failure in mice: role of mitochondrial superoxide anion. Basic Res Cardiol 114:17.  https://doi.org/10.1007/s00395-019-0726-1 CrossRefPubMedGoogle Scholar
  5. 5.
    Freund C, Schmidt-Ullrich R, Baurand A, Dunger S, Schneider W, Loser P, El-Jamali A, Dietz R, Scheidereit C, Bergmann MW (2005) Requirement of nuclear factor-kappaB in angiotensin II- and isoproterenol-induced cardiac hypertrophy in vivo. Circulation 111:2319–2325.  https://doi.org/10.1161/01.CIR.0000164237.58200.5A CrossRefPubMedGoogle Scholar
  6. 6.
    Galvez AS, Diwan A, Odley AM, Hahn HS, Osinska H, Melendez JG, Robbins J, Lynch RA, Marreez Y, Dorn GW 2nd (2007) Cardiomyocyte degeneration with calpain deficiency reveals a critical role in protein homeostasis. Circ Res 100:1071–1078.  https://doi.org/10.1161/01.RES.0000261938.28365.11 CrossRefPubMedGoogle Scholar
  7. 7.
    Garcia-Higuera I, Penela P, Murga C, Egea G, Bonay P, Benovic JL, Mayor F Jr (1994) Association of the regulatory beta-adrenergic receptor kinase with rat liver microsomal membranes. J Biol Chem 269:1348–1355.  https://doi.org/10.1074/jbc.271.2.985 CrossRefPubMedGoogle Scholar
  8. 8.
    Gelis C, Mavon A, Vicendo P (2005) The contribution of calpains in the down-regulation of Mdm2 and p53 proteolysis in reconstructed human epidermis in response to solar irradiation. Photochem Photobiol 81:975–982.  https://doi.org/10.1562/2004-08-05-RA-262 CrossRefPubMedGoogle Scholar
  9. 9.
    Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801.  https://doi.org/10.1152/physrev.00029.2002 CrossRefPubMedGoogle Scholar
  10. 10.
    Gupta S, Young D, Maitra RK, Gupta A, Popovic ZB, Yong SL, Mahajan A, Wang Q, Sen S (2008) Prevention of cardiac hypertrophy and heart failure by silencing of NF-κB. J Mol Biol 375:637–649.  https://doi.org/10.1016/j.jmb.2007.10.006 CrossRefPubMedGoogle Scholar
  11. 11.
    Hernando V, Inserte J, Sartorio CL, Parra VM, Poncelas-Nozal M, Garcia-Dorado D (2010) Calpain translocation and activation as pharmacological targets during myocardial ischemia/reperfusion. J Mol Cell Cardiol 49:271–279CrossRefGoogle Scholar
  12. 12.
    Hullmann J, Traynham CJ, Coleman RC, Koch WJ (2016) The expanding GRK interactome: implications in cardiovascular disease and potential for therapeutic development. Pharmacol Res 110:52–64.  https://doi.org/10.1016/j.phrs.2016.05.008 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Iaccarino G, Barbato E, Cipolletta E, De Amicis V, Margulies KB, Leosco D, Trimarco B, Koch WJ (2005) Elevated myocardial and lymphocyte GRK2 expression and activity in human heart failure. Eur Heart J 26:1752–1758.  https://doi.org/10.1093/eurheartj/ehi429 CrossRefPubMedGoogle Scholar
  14. 14.
    Inserte J (2012) Calpains in the cardiovascular system. Cardiovasc Res 96:9–10.  https://doi.org/10.1093/cvr/cvs245 CrossRefPubMedGoogle Scholar
  15. 15.
    Inuzuka H, Tseng A, Gao D, Zhai B, Zhang Q, Shaik S, Wan L, Ang XL, Mock C, Yin H, Stommel JM, Gygi S, Lahav G, Asara J, Xiao ZX, Kaelin WG Jr, Harper JW, Wei W (2010) Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase. Cancer Cell 18:147–159.  https://doi.org/10.1016/j.ccr.2010.06.015 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Islam KN, Koch WJ (2012) Involvement of nuclear factor kappaB (NF-κB) signaling pathway in regulation of cardiac G protein-coupled receptor kinase 5 (GRK5) expression. J Biol Chem 287:12771–12778.  https://doi.org/10.1074/jbc.M111.324566 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jean-Charles PY, Yu SM, Abraham D, Kommaddi RP, Mao L, Strachan RT, Zhang ZS, Bowles DE, Brian L, Stiber JA, Jones SN, Koch WJ, Rockman HA, Shenoy SK (2017) Mdm2 regulates cardiac contractility by inhibiting GRK2-mediated desensitization of beta-adrenergic receptor signaling. JCI Insight.  https://doi.org/10.1172/jci.insight.95998 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Karni-Schmidt O, Lokshin M, Prives C (2016) The Roles of MDM2 and MDMX in cancer. Annu Rev Pathol 11:617–644.  https://doi.org/10.1146/annurev-pathol-012414-040349 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kawano S, Kubota T, Monden Y, Kawamura N, Tsutsui H, Takeshita A, Sunagawa K (2005) Blockade of NF-κB ameliorates myocardial hypertrophy in response to chronic infusion of angiotensin II. Cardiovasc Res 67:689–698.  https://doi.org/10.1016/j.cardiores.2005.04.030 CrossRefPubMedGoogle Scholar
  20. 20.
    Kudo-Sakamoto Y, Akazawa H, Ito K, Takano J, Yano M, Yabumoto C, Naito AT, Oka T, Lee JK, Sakata Y, Suzuki J, Saido TC, Komuro I (2014) Calpain-dependent cleavage of N-cadherin is involved in the progression of post-myocardial infarction remodeling. J Biol Chem 289:19408–19419.  https://doi.org/10.1074/jbc.M114.567206 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Letavernier E, Perez J, Bellocq A, Mesnard L, de Castro Keller A, Haymann JP, Baud L (2008) Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin II-induced hypertension. Circ Res 102:720–728.  https://doi.org/10.1161/CIRCRESAHA.107.160077 CrossRefPubMedGoogle Scholar
  22. 22.
    Letavernier E, Zafrani L, Perez J, Letavernier B, Haymann JP, Baud L (2012) The role of calpains in myocardial remodelling and heart failure. Cardiovasc Res 96:38–45.  https://doi.org/10.1093/cvr/cvs099 CrossRefPubMedGoogle Scholar
  23. 23.
    Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of beta-adrenergic signaling in heart failure? Circ Res 93:896–906.  https://doi.org/10.1161/01.RES.0000102042.83024.CA CrossRefPubMedGoogle Scholar
  24. 24.
    Lombardi MS, Kavelaars A, Penela P, Scholtens EJ, Roccio M, Schmidt RE, Schedlowski M, Mayor F, Jr., Heijnen CJ (2002) Oxidative stress decreases G protein-coupled receptor kinase 2 in lymphocytes via a calpain-dependent mechanism. Mol Pharmacol 62:379–388CrossRefGoogle Scholar
  25. 25.
    Lucas E, Jurado-Pueyo M, Fortuno MA, Fernandez-Veledo S, Vila-Bedmar R, Jimenez-Borreguero LJ, Lazcano JJ, Gao E, Gomez-Ambrosi J, Fruhbeck G, Koch WJ, Diez J, Mayor F Jr, Murga C (2014) Downregulation of G protein-coupled receptor kinase 2 levels enhances cardiac insulin sensitivity and switches on cardioprotective gene expression patterns. Biochim Biophys Acta 1842:2448–2456.  https://doi.org/10.1016/j.bbadis.2014.09.004 CrossRefPubMedGoogle Scholar
  26. 26.
    Ma J, Wei M, Wang Q, Li J, Wang H, Liu W, Lacefield JC, Greer PA, Karmazyn M, Fan GC, Peng T (2012) Deficiency of Capn4 gene inhibits nuclear factor-kappaB (NF-κB) protein signaling/inflammation and reduces remodeling after myocardial infarction. J Biol Chem 287:27480–27489.  https://doi.org/10.1074/jbc.M112.358929 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Martinez-Martinez S, Gomez del Arco P, Armesilla AL, Aramburu J, Luo C, Rao A, Redondo JM (1997) Blockade of T cell activation by dithiocarbamates involves novel mechanisms of inhibition of nuclear factor of activated T cells. Mol Cell Biol 17:6437–6447.  https://doi.org/10.1128/MCB.17.11.6437 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mayor F Jr, Cruces-Sande M, Arcones AC, Vila-Bedmar R, Briones AM, Salaices M, Murga C (2018) G protein-coupled receptor kinase 2 (GRK2) as an integrative signalling node in the regulation of cardiovascular function and metabolic homeostasis. Cell Signal 41:25–32.  https://doi.org/10.1016/j.cellsig.2017.04.002 CrossRefPubMedGoogle Scholar
  29. 29.
    Murga C, Penela P, Zafra F, Mayor F Jr (1998) The subcellular and cellular distribution of G protein-coupled receptor kinase 2 in rat brain. Neuroscience 87:631–637.  https://doi.org/10.1016/S0306-4522(98)00145-6 CrossRefPubMedGoogle Scholar
  30. 30.
    Oka T, Walkup RD, Tamada Y, Nakajima E, Tochigi A, Shearer TR, Azuma M (2006) Amelioration of retinal degeneration and proteolysis in acute ocular hypertensive rats by calpain inhibitor ((1S)-1-((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-me thylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester. Neuroscience 141:2139–2145.  https://doi.org/10.1016/j.neuroscience.2006.05.060 CrossRefPubMedGoogle Scholar
  31. 31.
    Patterson C, Portbury AL, Schisler JC, Willis MS (2011) Tear me down: role of calpain in the development of cardiac ventricular hypertrophy. Circ Res 109:453–462.  https://doi.org/10.1161/CIRCRESAHA.110.239749 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Penela P (2016) Chapter Three—ubiquitination and protein turnover of G-protein-coupled receptor kinases in GPCR signaling and cellular regulation. Prog Mol Biol Transl Sci 141:85–140.  https://doi.org/10.1016/bs.pmbts.2016.04.002 CrossRefPubMedGoogle Scholar
  33. 33.
    Penela P, Ruiz-Gomez A, Castano JG, Mayor F Jr (1998) Degradation of the G protein-coupled receptor kinase 2 by the proteasome pathway. J Biol Chem 273:35238–35244.  https://doi.org/10.1074/jbc.273.52.35238 CrossRefPubMedGoogle Scholar
  34. 34.
    Poncelas M, Inserte J, Aluja D, Hernando V, Vilardosa U, Garcia-Dorado D (2017) Delayed, oral pharmacological inhibition of calpains attenuates adverse post-infarction remodelling. Cardiovasc Res 113:950–961.  https://doi.org/10.1093/cvr/cvx073 CrossRefPubMedGoogle Scholar
  35. 35.
    Ponikowski P, Anker SD, AlHabib KF, Cowie MR, Force TL, Hu S, Jaarsma T, Krum H, Rastogi V, Rohde LE, Samal UC, Shimokawa H, Budi Siswanto B, Sliwa K, Filippatos G (2014) Heart failure: preventing disease and death worldwide. ESC Heart Fail 1:4–25.  https://doi.org/10.1002/ehf2.12005 CrossRefPubMedGoogle Scholar
  36. 36.
    Prado FP, Dos Santos DO, Blefari V, Silva CA, Machado J, Kettelhut IDC, Ramos SG, Baruffi MD, Salgado HC, Prado CM (2017) Early dystrophin loss is coincident with the transition of compensated cardiac hypertrophy to heart failure. PLoS One 12:e0189469.  https://doi.org/10.1371/journal.pone.0189469 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Raake PW, Vinge LE, Gao E, Boucher M, Rengo G, Chen X, DeGeorge BR Jr, Matkovich S, Houser SR, Most P, Eckhart AD, Dorn GW 2nd, Koch WJ (2008) G protein-coupled receptor kinase 2 ablation in cardiac myocytes before or after myocardial infarction prevents heart failure. Circ Res 103:413–422.  https://doi.org/10.1161/CIRCRESAHA.107.168336 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ramos-Ruiz R, Penela P, Penn RB, Mayor F Jr (2000) Analysis of the human G protein-coupled receptor kinase 2 (GRK2) gene promoter: regulation by signal transduction systems in aortic smooth muscle cells. Circulation 101:2083–2089.  https://doi.org/10.1161/01.CIR.101.17.2083 CrossRefPubMedGoogle Scholar
  39. 39.
    Rengo G, Pagano G, Filardi PP, Femminella GD, Parisi V, Cannavo A, Liccardo D, Komici K, Gambino G, D’Amico ML, de Lucia C, Paolillo S, Trimarco B, Vitale DF, Ferrara N, Koch WJ, Leosco D (2016) Prognostic value of lymphocyte G protein-coupled receptor kinase-2 protein levels in patients with heart failure. Circ Res 118:1116–1124.  https://doi.org/10.1161/CIRCRESAHA.115.308207 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Salcedo A, Mayor F Jr, Penela P (2006) Mdm2 is involved in the ubiquitination and degradation of G-protein-coupled receptor kinase 2. EMBO J 25:4752–4762.  https://doi.org/10.1038/sj.emboj.7601351 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Saleem N, Prasad A, Goswami SK (2017) Apocynin prevents isoproterenol-induced cardiac hypertrophy in rat. Mol Cell Biochem.  https://doi.org/10.1007/s11010-017-3253-0 CrossRefPubMedGoogle Scholar
  42. 42.
    Schlegel P, Reinkober J, Meinhardt E, Tscheschner H, Gao E, Schumacher SM, Yuan A, Backs J, Most P, Wieland T, Koch WJ, Katus HA, Raake PW (2017) G protein-coupled receptor kinase 2 promotes cardiac hypertrophy. PLoS One 12:e0182110.  https://doi.org/10.1371/journal.pone.0182110 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sorriento D, Santulli G, Franco A, Cipolletta E, Napolitano L, Gambardella J, Gomez-Monterrey I, Campiglia P, Trimarco B, Iaccarino G, Ciccarelli M (2015) Integrating GRK2 and NFκB in the pathophysiology of cardiac hypertrophy. J Cardiovasc Transl Res 8:493–502.  https://doi.org/10.1007/s12265-015-9646-0 CrossRefPubMedGoogle Scholar
  44. 44.
    Takahashi M, Tanonaka K, Yoshida H, Koshimizu M, Daicho T, Oikawa R, Takeo S (2006) Possible involvement of calpain activation in pathogenesis of chronic heart failure after acute myocardial infarction. J Cardiovasc Pharmacol 47:413–421.  https://doi.org/10.1097/01.fjc.0000210074.56614.3b CrossRefPubMedGoogle Scholar
  45. 45.
    Taneike M, Mizote I, Morita T, Watanabe T, Hikoso S, Yamaguchi O, Takeda T, Oka T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K, Takeda J, Mochizuki N, Komuro I, Otsu K (2011) Calpain protects the heart from hemodynamic stress. J Biol Chem 286:32170–32177.  https://doi.org/10.1074/jbc.M111.248088 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Toth A, Nickson P, Qin LL, Erhardt P (2006) Differential regulation of cardiomyocyte survival and hypertrophy by MDM2, an E3 ubiquitin ligase. J Biol Chem 281:3679–3689.  https://doi.org/10.1074/jbc.M509630200 CrossRefPubMedGoogle Scholar
  47. 47.
    Ungerer M, Bohm M, Elce JS, Erdmann E, Lohse MJ (1993) Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 87:454–463.  https://doi.org/10.1161/01.CIR.87.2.454 CrossRefPubMedGoogle Scholar
  48. 48.
    Wan F, Letavernier E, Le Saux CJ, Houssaini A, Abid S, Czibik G, Sawaki D, Marcos E, Dubois-Rande JL, Baud L, Adnot S, Derumeaux G, Gellen B (2015) Calpastatin overexpression impairs postinfarct scar healing in mice by compromising reparative immune cell recruitment and activation. Am J Physiol Heart Circ Physiol 309:H1883–H1893.  https://doi.org/10.1152/ajpheart.00594.2015 CrossRefPubMedGoogle Scholar
  49. 49.
    Wang Y, Chen B, Huang CK, Guo A, Wu J, Zhang X, Chen R, Chen C, Kutschke W, Weiss RM, Boudreau RL, Margulies KB, Hong J, Song LS (2018) Targeting calpain for heart failure therapy: implications from multiple murine models. JACC Basic Transl Sci 3:503–517.  https://doi.org/10.1016/j.jacbts.2018.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Yang D, Ma S, Tan Y, Li D, Tang B, Zhang X, Sun M, Yang Y (2010) Increased expression of calpain and elevated activity of calcineurin in the myocardium of patients with congestive heart failure. Int J Mol Med 26:159–164.  https://doi.org/10.3892/ijmm_00000448 CrossRefPubMedGoogle Scholar
  51. 51.
    Ye T, Wang Q, Zhang Y, Song X, Yang D, Li D, Li D, Su L, Yang Y, Ma S (2015) Over-expression of calpastatin inhibits calpain activation and attenuates post-infarction myocardial remodeling. PLoS One 10:e0120178.  https://doi.org/10.1371/journal.pone.0120178 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zha Z, Han X, Smith MD, Liu Y, Giguere PM, Kopanja D, Raychaudhuri P, Siderovski DP, Guan KL, Lei QY, Xiong Y (2015) A non-canonical function of Gbeta as a subunit of E3 ligase in targeting GRK2 ubiquitylation. Mol Cell 58:794–803.  https://doi.org/10.1016/j.molcel.2015.04.017 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cardiovascular Diseases Research GroupVall d’Hebron University Hospital and Research InstituteBarcelonaSpain
  2. 2.Universitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.CIBER de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
  4. 4.Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC)MadridSpain
  5. 5.Instituto de Investigación Sanitaria La PrincesaMadridSpain

Personalised recommendations