Advertisement

Live monitoring of small vessels during development and disease using the flt-1 promoter element

  • Katia Herz
  • Jan C. Heinemann
  • Michael Hesse
  • Annika Ottersbach
  • Caroline Geisen
  • Christopher J. Fuegemann
  • Wilhelm Röll
  • Bernd K. Fleischmann
  • Daniela WenzelEmail author
Original Contribution

Abstract

Vessel formation is of critical importance for organ function in the normal and diseased state. In particular, the labeling and quantitation of small vessels prove to be technically challenging using current approaches. We have, therefore, established a transgenic embryonic stem (ES) cell line and a transgenic mouse model where the vascular endothelial growth factor receptor VEGFR-1 (flt-1) promoter drives the expression of the live reporter eGFP. Fluorescence microscopy and immunostainings revealed endothelial-specific eGFP labeling of vascular networks. The expression pattern recapitulates that of the endogenous flt-1 gene, because small and large vessels are labeled by eGFP during embryonic development; after birth, the expression becomes more restricted to small vessels. We have explored this in the cardiovascular system more in detail and found that all small vessels and capillaries within the heart are strongly eGFP+. In addition, myocardial injuries have been induced in transgenic mice and prominent vascular remodeling, and an increase in endothelial cell area within the peri-infarct area could be observed underscoring the utility of this mouse model. Thus, the transgenic flt-1/eGFP models are powerful tools to investigate and quantify vascularization in vivo and to probe the effect of different compounds on vessel formation in vitro.

Keywords

flt-1 eGFP Endothelium Transgenic mouse ES cells 

Notes

Acknowledgments

We thank A. Nagy (Mount Sinai Hospital Toronto) and M. Gertsenstein (Toronto, Canada) for providing the G4 ES cell line, N. Copeland (NCI, Frederick, USA) for providing SW105 cells, R. Schneider-Kramann (University of Aachen) for help with teratoma analysis and Y. Matuschek (University of Bonn) for assistance in vector cloning. Funding was provided to the junior research group of D.W. by the Ministry of Innovation, Science, Research and Technology of the State of North Rhine-Westphalia. This work was further supported EU FP7 consortium CardioCell Grant No. 223372 (to BKF).

Supplementary material

395_2012_257_MOESM1_ESM.jpg (857 kb)
Supplementary material 1 (JPEG 857 kb)
395_2012_257_MOESM2_ESM.jpg (1.2 mb)
Supplementary material 2 (JPEG 1245 kb)
395_2012_257_MOESM3_ESM.jpg (873 kb)
Supplementary material 3 (JPEG 873 kb)
395_2012_257_MOESM4_ESM.jpg (836 kb)
Supplementary material 4 (JPEG 836 kb)

Supplementary Video(MPEG 446 kb)

References

  1. 1.
    Bernatchez PN, Soker S, Sirois MG (1999) Vascular endothelial growth factor effect on endothelial cell proliferation, migration, and platelet-activating factor synthesis is flk-1-dependent. J Biol Chem 274:31047–31054. doi: 10.1074/jbc.274.43.31047 PubMedCrossRefGoogle Scholar
  2. 2.
    Breier G, Clauss M, Risau W (1995) Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligand suggests a paracrine regulation of murine vascular development. Dev Dyn 204:228–239. doi: 10.1002/aja.1002040303 PubMedCrossRefGoogle Scholar
  3. 3.
    Bremer S, Worth AP, Paparella M, Bigot K, Kolossov E, Fleischmann BK, Hescheler J, Balls M (2001) Establishment of an in vitro reporter gene assay for developmental cardiac toxicity. Toxicol In Vitro 15:215–223. doi: 10.1016/S0887-2333(01)00007-8 PubMedCrossRefGoogle Scholar
  4. 4.
    Dor Y, Camenisch TD, Itin A, Fishman GI, McDonald JA, Carmeliet P, Keshet E (2001) A novel role for VEGF in endocardial cushion formation and its potential contribution to congenital heart defects. Development 128:1531–1538PubMedGoogle Scholar
  5. 5.
    Fong GH, Klingensmith J, Wood CR, Rossant J, Breitman ML (1996) Regulation of flt-1 expression during mouse embryogenesis suggests a role in the establishment of vascular endothelium. Dev Dyn 207:1–10. doi: 10.1002/(SICI)1097-0177(199609)207:1<1:AID-AJA1>3.0.CO;2-M PubMedCrossRefGoogle Scholar
  6. 6.
    Frank NY, Schatton T, Kim S, Zhan Q, Wilson BJ, Ma J, Saab KR, Osherov V, Widlund HR, Gasser M, Waaga-Gasser AM, Kupper TS, Murphy GF, Frank MH (2011) VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth. Cancer Res 71:1474–1485PubMedCrossRefGoogle Scholar
  7. 7.
    George SH, Gertsenstein M, Vintersten K, Korets-Smith E, Murphy J, Stevens ME, Haigh JJ, Nagy A (2007) Developmental and adult phenotyping directly from mutant embryonic stem cells. Proc Natl Acad Sci U S A 104:4455–4460. doi: 10.1073/pnas.0609277104 PubMedCrossRefGoogle Scholar
  8. 8.
    Hazarika S, Dokun AO, Li Y, Popel AS, Kontos CD, Annex BH (2007) Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circ Res 101:948–956. doi: 10.1161/CIRCRESAHA.107.160630 PubMedCrossRefGoogle Scholar
  9. 9.
    Hidaka M, Stanford WL, Bernstein A (1999) Conditional requirement for the flk-1 receptor in the in vitro generation of early hematopoietic cells. Proc Natl Acad Sci USA 96:7370–7375. doi: 10.1073/pnas.96.13.7370 PubMedCrossRefGoogle Scholar
  10. 10.
    Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827. doi: 10.1038/nature04186 PubMedCrossRefGoogle Scholar
  11. 11.
    Kolossov E, Bostani T, Roell W, Breitbach M, Pillekamp F, Nygren JM, Sasse P, Rubenchik O, Fries JW, Wenzel D, Geisen C, Xia Y, Lu Z, Duan Y, Kettenhofen R, Jovinge S, Bloch W, Bohlen H, Welz A, Hescheler J, Jacobsen SE, Fleischmann BK (2006) Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. J Exp Med 203:2315–2327. doi: 10.1084/jem.20061469 PubMedCrossRefGoogle Scholar
  12. 12.
    Krijnen PA, Hahn NE, Kholova I, Baylan U, Sipkens JA, van Alphen FP, Vonk AB, Simsek S, Meischl C, Schalkwijk CG, van Buul JD, van Hinsberg VW, Niessen HW (2012) Loss of DPP4 activity is related to a prothrombogenic status of endothelial cells: implications for the coronary microvasculature of myocardial infarction patients. Basic Res Cardiol 107:1–13. doi: 10.1007/s00395-011-0233-5 Google Scholar
  13. 13.
    Lahteenvuo JE, Lahteenvuo MT, Kivela A, Rosenlew C, Falkevall A, Klar J, Heikura T, Rissanen TT, Vahakangas E, Korpisalo P, Enholm B, Carmeliet P, Alitalo K, Eriksson U, Yla-Herttuala S (2009) Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation 119:845–856. doi: 10.1161/CIRCULATIONAHA.108.8164 PubMedCrossRefGoogle Scholar
  14. 14.
    Lassaletta AD, Chu LM, Sellke FW (2011) Therapeutic neovascularization for coronary disease: current state and future prospects. Basic Res Cardiol 106:897–909. doi: 10.1007/s00395-011-0200-1 PubMedCrossRefGoogle Scholar
  15. 15.
    Li J, Brown LF, Hibberd MG, Grossman JD, Morgan JP, Simons M (1996) VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol 270:H1803–H1811PubMedGoogle Scholar
  16. 16.
    Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F, Nagy JA, Hooper A, Priller J, De KB, Compernolle V, Daci E, Bohlen P, Dewerchin M, Herbert JM, Fava R, Matthys P, Carmeliet G, Collen D, Dvorak HF, Hicklin DJ, Carmeliet P (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-flt1. Nat Med 8:831–840. doi: 10.1038/nm731 Google Scholar
  17. 17.
    Malan D, Wenzel D, Schmidt A, Geisen C, Raible A, Bolck B, Fleischmann BK, Bloch W (2012) Endothelial beta-1 integrins regulate sprouting and network formation during vascular development. Development 137:993–1002. doi: 10.1242/dev.045377 CrossRefGoogle Scholar
  18. 18.
    Marchetti S, Gimond C, Iljin K, Bourcier C, Alitalo K, Pouyssegur J, Pages G (2002) Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo. J Cell Sci 115:2075–2085PubMedGoogle Scholar
  19. 19.
    Marti HH, Risau W (1998) Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Natl Acad Sci USA 95:15809–15814. doi: 10.1073/pnas.95.26.15809 Google Scholar
  20. 20.
    Milberg P, Klocke R, Frommeyer G, Quang TH, Dieks K, Stypmann J, Osada N, Kuhlmann M, Fehr M, Milting H, Nikol S, Waltenberger J, Breithardt G, Eckardt L (2011) G-CSF therapy reduces myocardial repolarization reserve in the presence of increased arteriogenesis, angiogenesis and connexin 43 expression in an experimental model of pacing-induced heart failure. Basic Res Cardiol 106:995–1008. doi: 10.1007/s00395-011-0230-8 PubMedCrossRefGoogle Scholar
  21. 21.
    Nagy A, Gocza E, Diaz EM, Prideaux VR, Ivanyi E, Markkula M, Rossant J (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development 110:815–821PubMedGoogle Scholar
  22. 22.
    Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22PubMedGoogle Scholar
  23. 23.
    Oerlemans MI, Goumans MJ, van MB, Clevers H, Doevendans PA, Sluijter JP (2012). Active Wnt signaling in response to cardiac injury. Basic Res Cardiol 105:631–641. doi: 10.1007/s00395-010-0100-9
  24. 24.
    Ohtani K, Dimmeler S (2011) Control of cardiovascular differentiation by microRNAs. Basic Res Cardiol 106:5–11. doi: 10.1007/s00395-010-0139-7 PubMedCrossRefGoogle Scholar
  25. 25.
    Peters KG, De VC, Williams LT (1993) Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc Natl Acad Sci USA 90:8915–8919. doi: 10.1073/pnas.90.19.8915
  26. 26.
    Quinn G, Ochiya T, Terada M, Yoshida T (2000) Mouse flt-1 promoter directs endothelial-specific expression in the embryoid body model of embryogenesis. Biochem Biophys Res Commun 276:1089–1099. doi: 10.1006/bbrc.2000.3602 PubMedCrossRefGoogle Scholar
  27. 27.
    Redick SD, Bautch VL (1999) Developmental platelet endothelial cell adhesion molecule expression suggests multiple roles for a vascular adhesion molecule. Am J Pathol 154:1137–1147. doi: 10.1016/S0002-9440(10)65366-7 PubMedCrossRefGoogle Scholar
  28. 28.
    Roell W, Lewalter T, Sasse P, Tallini YN, Choi BR, Breitbach M, Doran R, Becher UM, Hwang SM, Bostani T, von MJ, Hofmann A, Reining S, Eiberger B, Gabris B, Pfeifer A, Welz A, Willecke K, Salama G, Schrickel JW, Kotlikoff MI, Fleischmann BK (2007) Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature 450:819–824. doi: 10.1038/nature06321
  29. 29.
    Roell W, Lu ZJ, Bloch W, Siedner S, Tiemann K, Xia Y, Stoecker E, Fleischmann M, Bohlen H, Stehle R, Kolossov E, Brem G, Addicks K, Pfitzer G, Welz A, Hescheler J, Fleischmann BK (2002) Cellular cardiomyoplasty improves survival after myocardial injury. Circulation 105:2435–2441. doi: 10.1161/01.CIR.0000016063.66513.BB PubMedCrossRefGoogle Scholar
  30. 30.
    Sacchetti A, El ST, Nasr AF, Alberti S (2001) Efficient GFP mutations profoundly affect mRNA transcription and translation rates. FEBS Lett 492:151–155. doi: 10.1016/S0014-5793(01)02246-3 PubMedCrossRefGoogle Scholar
  31. 31.
    Stankunas K, Ma GK, Kuhnert FJ, Kuo CJ, Chang CP (2010) VEGF signaling has distinct spatiotemporal roles during heart valve development. Dev Biol 347:325–336PubMedCrossRefGoogle Scholar
  32. 32.
    Ulyatt C, Walker J, Ponnambalam S (2011) Hypoxia differentially regulates VEGFR1 and VEGFR2 levels and alters intracellular signaling and cell migration in endothelial cells. Biochem Biophys Res Commun 404:774–779PubMedCrossRefGoogle Scholar
  33. 33.
    Wenzel D, Knies R, Matthey M, Klein AM, Welschoff J, Stolle V, Sasse P, Roll W, Breuer J, Fleischmann BK (2009) Beta(2)-adrenoceptor antagonist ICI 118,551 decreases pulmonary vascular tone in mice via a G(i/o) protein/nitric oxide-coupled pathway. Hypertension 54:157–163. doi: 10.1161/HYPERTENSIONAHA.109.130468 PubMedCrossRefGoogle Scholar
  34. 34.
    Wenzel D, Rieck S, Vosen S, Mykhaylyk O, Trueck C, Eberbeck D, Trahms L, Zimmeremann K, Pfeifer A, Fleischmann BK (2012) Identification of magnetic nanoparticles for combined positioning and lentiviral transduction of endothelial cells. Pharm Res. doi: 10.1007/s11095-011-0657-5 Google Scholar
  35. 35.
    Witmer AN, Dai J, Weich HA, Vrensen GF, Schlingemann RO (2002) Expression of vascular endothelial growth factor receptors 1, 2, and 3 in quiescent endothelia. J Histochem Cytochem 50:767–777. doi: 10.1177/002215540205000603 PubMedCrossRefGoogle Scholar
  36. 36.
    Wobus AM, Wallukat G, Hescheler J (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48:173–182PubMedCrossRefGoogle Scholar
  37. 37.
    Wu J, Li J, Zhang N, Zhang C (2011) Stem cell-based therapies in ischemic heart diseases: a focus on aspects of microcirculation and inflammation. Basic Res Cardiol 106:317–324. doi: 10.1007/s00395-011-0168-x PubMedCrossRefGoogle Scholar
  38. 38.
    Xiao J, Moon M, Yan L, Nian M, Zhang Y, Liu C, Lu J, Guan H, Chen M, Jiang D, Jiang H, Liu PP, Li H (2012) Cellular FLICE-inhibitory protein protects against cardiac remodelling after myocardial infarction. Basic Res Cardiol 107:1–21. doi: 10.1007/s00395-011-0239-z CrossRefGoogle Scholar
  39. 39.
    Zentilin L, Puligadda U, Lionetti V, Zacchigna S, Collesi C, Pattarini L, Ruozi G, Camporesi S, Sinagra G, Pepe M, Recchia FA, Giacca M (2010) Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J 24:1467–1478PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Katia Herz
    • 1
  • Jan C. Heinemann
    • 1
  • Michael Hesse
    • 1
  • Annika Ottersbach
    • 1
  • Caroline Geisen
    • 1
  • Christopher J. Fuegemann
    • 1
  • Wilhelm Röll
    • 2
  • Bernd K. Fleischmann
    • 1
  • Daniela Wenzel
    • 1
    Email author
  1. 1.Institute of Physiology IUniversity of BonnBonnGermany
  2. 2.Department of Cardiac SurgeryUniversity of BonnBonnGermany

Personalised recommendations