Ergogenic effects of caffeine on peak aerobic cycling power during the menstrual cycle

  • Beatriz Lara
  • Jorge Gutiérrez-Hellín
  • Alberto García-Bataller
  • Paloma Rodríguez-Fernández
  • Blanca Romero-Moraleda
  • Juan Del CosoEmail author
Original Contribution



Recent investigations have established that the ingestion of a moderate dose of caffeine (3–6 mg kg−1) can increase exercise and sports performance in women. However, it is unknown whether the ergogenicity of caffeine is similar during all phases of the menstrual cycle. The aim of this investigation was to determine the ergogenic effects of caffeine in three phases of the menstrual cycle.


Thirteen well-trained eumenorrheic triathletes (age = 31 ± 6 years; body mass = 58.6 ± 7.8 kg) participated in a double-blind, cross-over, randomised experimental trial. In the (1) early follicular (EF); (2) preovulation (PO); (3) and mid luteal (ML) phases, participants either ingested a placebo (cellulose) or 3 mg kg−1 of caffeine in an opaque and unidentifiable capsule. After a 60-min wait for substance absorption, participants performed an incremental maximal cycle ergometer test until volitional fatigue (25 W/min) to assess peak aerobic cycling power (Wmax).


In comparison to the placebo, caffeine increased Wmax in the EF (4.13 ± 0.69 vs. 4.24 ± 0.71 W kg−1, Δ = 2.7 ± 3.3%, P = 0.01), in the PO (4.14 ± 0.70 vs. 4.27 ± 0.73 W kg−1, Δ = 3.3 ± 5.0%; P = 0.03) and in the ML (4.15 ± 0.69 vs. 4.29 ± 0.67 W kg−1, Δ = 3.6 ± 5.1%; P = 0.01) phases. The magnitude of the caffeine ergogenic effect was similar during all of the menstrual cycle phases (P = 0.85).


Caffeine increased peak aerobic cycling power in the early follicular, preovulatory, and mid luteal phases. Thus, the ingestion of 3 mg of caffeine per kg of body mass might be considered an ergogenic aid for eumenorrheic women during all three phases of the menstrual cycle.


Ergogenicity Stimulant Exercise Women Sex Physical activity 



The authors would like to thank the participants for their invaluable contribution to this research effort at investigating the effects of caffeine on female athletes. The authors are also very grateful to the Spanish Triathlon Federation for their support and help in the recruitment process.


The study was part of the CAFTRI project supported by a grant from the Spanish National Sports Council conceded to the Spanish Triathlon Federation, which covered the expenses necessary to carry out this project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest derived from the outcomes of this study.


  1. 1.
    Souza DB, Del Coso J, Casonatto J, Polito MD (2017) Acute effects of caffeine-containing energy drinks on physical performance: a systematic review and meta-analysis. Eur J Nutr 56(1):13–27. CrossRefPubMedGoogle Scholar
  2. 2.
    Glaister M, Gissane C (2018) Caffeine and physiological responses to submaximal exercise: a meta-analysis. Int J Sports Physiol Perform 13(4):402–411. CrossRefPubMedGoogle Scholar
  3. 3.
    Grgic J (2018) Caffeine ingestion enhances Wingate performance: a meta-analysis. Eur J Sport Sci 18(2):219–225. CrossRefPubMedGoogle Scholar
  4. 4.
    Salinero JJ, Lara B, Del Coso J (2018) Effects of acute ingestion of caffeine on team sports performance: a systematic review and meta-analysis. Res Sports Med. CrossRefPubMedGoogle Scholar
  5. 5.
    Warren GL, Park ND, Maresca RD, McKibans KI, Millard-Stafford ML (2010) Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc 42(7):1375–1387. CrossRefPubMedGoogle Scholar
  6. 6.
    Conger SA, Warren GL, Hardy MA, Millard-Stafford ML (2011) Does caffeine added to carbohydrate provide additional ergogenic benefit for endurance? Int J Sport Nutr Exerc Metab 21(1):71–84CrossRefGoogle Scholar
  7. 7.
    Grgic J, Grgic I, Pickering C, Schoenfeld BJ, Bishop DJ, Pedisic Z (2019) Wake up and smell the coffee: caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses. Br J Sports Med. CrossRefPubMedGoogle Scholar
  8. 8.
    Maughan RJ, Burke LM, Dvorak J, Larson-Meyer DE, Peeling P, Phillips SM, Rawson ES, Walsh NP, Garthe I, Geyer H, Meeusen R, van Loon LJC, Shirreffs SM, Spriet LL, Stuart M, Vernec A, Currell K, Ali VM, Budgett RG, Ljungqvist A, Mountjoy M, Pitsiladis YP, Soligard T, Erdener U, Engebretsen L (2018) IOC consensus statement: dietary supplements and the high-performance athlete. Br J Sports Med 52(7):439–455. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Salinero JJ, Lara B, Jimenez-Ormeno E, Romero-Moraleda B, Giraldez-Costas V, Baltazar-Martins G, Del Coso J (2019) More research is necessary to establish the ergogenic effect of caffeine in female athletes. Nutrients. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fett CA, Aquino NM, Schantz Junior J, Brandao CF, de Araujo Cavalcanti JD, Fett WC (2018) Performance of muscle strength and fatigue tolerance in young trained women supplemented with caffeine. J Sports Med Phys Fit 58(3):249–255. CrossRefGoogle Scholar
  11. 11.
    Goldstein E, Jacobs PL, Whitehurst M, Penhollow T, Antonio J (2010) Caffeine enhances upper body strength in resistance-trained women. J Int Soc Sports Nutr 7:18. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Astorino TA, Roupoli LR, Valdivieso BR (2012) Caffeine does not alter RPE or pain perception during intense exercise in active women. Appetite 59(2):585–590. CrossRefPubMedGoogle Scholar
  13. 13.
    Lara B, Gonzalez-Millan C, Salinero JJ, Abian-Vicen J, Areces F, Barbero-Alvarez JC, Munoz V, Portillo LJ, Gonzalez-Rave JM, Del Coso J (2014) Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids 46(5):1385–1392. CrossRefPubMedGoogle Scholar
  14. 14.
    Del Coso J, Portillo J, Munoz G, Abian-Vicen J, Gonzalez-Millan C, Munoz-Guerra J (2013) Caffeine-containing energy drink improves sprint performance during an international rugby sevens competition. Amino Acids 44(6):1511–1519. CrossRefPubMedGoogle Scholar
  15. 15.
    Perez-Lopez A, Salinero JJ, Abian-Vicen J, Valades D, Lara B, Hernandez C, Areces F, Gonzalez C, Del Coso J (2015) Caffeinated energy drinks improve volleyball performance in elite female players. Med Sci Sports Exerc 47(4):850–856. CrossRefPubMedGoogle Scholar
  16. 16.
    Skinner TL, Desbrow B, Arapova J, Schaumberg MA, Osborne J, Grant GD, Anoopkumar-Dukie S, Leveritt MD (2019) Women experience the same ergogenic response to caffeine as men. Med Sci Sports Exerc. CrossRefPubMedGoogle Scholar
  17. 17.
    Lane SC, Hawley JA, Desbrow B, Jones AM, Blackwell JR, Ross ML, Zemski AJ, Burke LM (2014) Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance. Appl Physiol Nutr Metab 39(9):1050–1057. CrossRefPubMedGoogle Scholar
  18. 18.
    Puente C, Abian-Vicen J, Salinero JJ, Lara B, Areces F, Del Coso J (2017) Caffeine improves basketball performance in experienced basketball players. Nutrients 9:9. CrossRefGoogle Scholar
  19. 19.
    Prins PJ, Goss FL, Nagle EF, Beals K, Robertson RJ, Lovalekar MT, Welton GL (2016) Energy drinks improve five-kilometer running performance in recreational endurance runners. J Strength Cond Res 30(11):2979–2990. CrossRefPubMedGoogle Scholar
  20. 20.
    Abian P, Del Coso J, Salinero JJ, Gallo-Salazar C, Areces F, Ruiz-Vicente D, Lara B, Soriano L, Munoz V, Abian-Vicen J (2015) The ingestion of a caffeinated energy drink improves jump performance and activity patterns in elite badminton players. J Sports Sci 33(10):1042–1050. CrossRefPubMedGoogle Scholar
  21. 21.
    Gallo-Salazar C, Areces F, Abian-Vicen J, Lara B, Salinero JJ, Gonzalez-Millan C, Portillo J, Munoz V, Juarez D, Del Coso J (2015) Enhancing physical performance in elite junior tennis players with a caffeinated energy drink. Int J Sports physiol Perform 10(3):305–310. CrossRefPubMedGoogle Scholar
  22. 22.
    Lara B, Ruiz-Moreno C, Salinero JJ, Del Coso J (2019) Time course of tolerance to the performance benefits of caffeine. PLoS One 14(1):e0210275. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sabblah S, Dixon D, Bottoms L (2015) Sex differences on the acute effects of caffeine on maximal strength and muscular endurance. Comp Exerc Physiol 11(2):89–94. CrossRefGoogle Scholar
  24. 24.
    Bruinvels G, Burden RJ, McGregor AJ, Ackerman KE, Dooley M, Richards T, Pedlar C (2017) Sport, exercise and the menstrual cycle: where is the research? Br J Sports Med 51(6):487–488. CrossRefPubMedGoogle Scholar
  25. 25.
    Kamimori GH, Joubert A, Otterstetter R, Santaromana M, Eddington ND (1999) The effect of the menstrual cycle on the pharmacokinetics of caffeine in normal, healthy eumenorrheic females. Eur J Clin Pharmacol 55(6):445–449CrossRefGoogle Scholar
  26. 26.
    McLean C, Graham TE (2002) Effects of exercise and thermal stress on caffeine pharmacokinetics in men and eumenorrheic women. J Appl Physiol (Bethesda, Md: 1985) 93(4):1471–1478. CrossRefGoogle Scholar
  27. 27.
    Magkos F, Kavouras SA (2005) Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit Rev Food Sci Nutr 45(7–8):535–562. CrossRefPubMedGoogle Scholar
  28. 28.
    Schliep KC, Schisterman EF, Wactawski-Wende J, Perkins NJ, Radin RG, Zarek SM, Mitchell EM, Sjaarda LA, Mumford SL (2016) Serum caffeine and paraxanthine concentrations and menstrual cycle function: correlations with beverage intakes and associations with race, reproductive hormones, and anovulation in the BioCycle Study. Am J Clin Nutr 104(1):155–163. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Arnaud MJ (2011) Pharmacokinetics and metabolism of natural methylxanthines in animal and man. Handb Exp Pharmacol 200:33–91. CrossRefGoogle Scholar
  30. 30.
    Granfors MT, Backman JT, Laitila J, Neuvonen PJ (2005) Oral contraceptives containing ethinyl estradiol and gestodene markedly increase plasma concentrations and effects of tizanidine by inhibiting cytochrome P450 1A2. Clin Pharmacol Ther 78(4):400–411. CrossRefPubMedGoogle Scholar
  31. 31.
    Temple JL, Ziegler AM (2011) Gender differences in subjective and physiological responses to caffeine and the role of steroid hormones. J Caffeine Res 1(1):41–48. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Temple JL, Ziegler AM, Martin C, de Wit H (2015) Subjective responses to caffeine are influenced by caffeine dose, sex, and pubertal stage. J Caffeine Res 5(4):167–175. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Temple JL, Ziegler AM, Graczyk A, Bendlin A, Sion T, Vattana K (2014) Cardiovascular responses to caffeine by gender and pubertal stage. Pediatrics 134(1):e112–119. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Goncalves LS, Painelli VS, Yamaguchi G, Oliveira LF, Saunders B, da Silva RP, Maciel E, Artioli GG, Roschel H, Gualano B (2017) Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J Appl Physiol (Bethesda, Md: 1985) 123(1):213–220. CrossRefGoogle Scholar
  35. 35.
    Janse de Jonge XA (2003) Effects of the menstrual cycle on exercise performance. Sports Med 33(11):833–851. CrossRefPubMedGoogle Scholar
  36. 36.
    Burke LM, Hawley JA, Wong SH, Jeukendrup AE (2011) Carbohydrates for training and competition. J Sports Sci 29(Suppl 1):S17–27. CrossRefPubMedGoogle Scholar
  37. 37.
    McDermott BP, Anderson SA, Armstrong LE, Casa DJ, Cheuvront SN, Cooper L, Kenney WL, O’Connor FG, Roberts WO (2017) National athletic trainers’ association position statement: fluid replacement for the physically active. J Athl Train 52(9):877–895. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ganio MS, Johnson EC, Klau JF, Anderson JM, Casa DJ, Maresh CM, Volek JS, Armstrong LE (2011) Effect of ambient temperature on caffeine ergogenicity during endurance exercise. Eur J Appl Physiol 111(6):1135–1146. CrossRefPubMedGoogle Scholar
  39. 39.
    Edvardsen E, Hem E, Anderssen SA (2014) End criteria for reaching maximal oxygen uptake must be strict and adjusted to sex and age: a cross-sectional study. PLoS One 9(1):e85276. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Salinero JJ, Lara B, Abian-Vicen J, Gonzalez-Millan C, Areces F, Gallo-Salazar C, Ruiz-Vicente D, Del Coso J (2014) The use of energy drinks in sport: perceived ergogenicity and side effects in male and female athletes. Br J Nutr 112(9):1494–1502. CrossRefPubMedGoogle Scholar
  41. 41.
    Batterham AM, Hopkins WG (2006) Making meaningful inferences about magnitudes. Int J Sports Physiol Perform 1(1):50–57CrossRefGoogle Scholar
  42. 42.
    Jurkowski JE, Jones NL, Toews CJ, Sutton JR (1981) Effects of menstrual cycle on blood lactate, O2 delivery, and performance during exercise. J Appl Physiol 51(6):1493–1499. CrossRefPubMedGoogle Scholar
  43. 43.
    Gordon D, Scruton A, Barnes R, Baker J, Prado L, Merzbach V (2018) The effects of menstrual cycle phase on the incidence of plateau at V O2max and associated cardiorespiratory dynamics. Clin Physiol Funct Imaging 38(4):689–698. CrossRefPubMedGoogle Scholar
  44. 44.
    Bemben DA, Salm PC, Salm AJ (1995) Ventilatory and blood lactate responses to maximal treadmill exercise during the menstrual cycle. J Sports Med Phys Fit 35(4):257–262Google Scholar
  45. 45.
    Pickering C, Kiely J (2018) Are the current guidelines on caffeine use in sport optimal for everyone? Inter-individual variation in caffeine ergogenicity, and a move towards personalised sports nutrition. Sports Med 48(1):7–16. CrossRefPubMedGoogle Scholar
  46. 46.
    Jenkins NT, Trilk JL, Singhal A, O’Connor PJ, Cureton KJ (2008) Ergogenic effects of low doses of caffeine on cycling performance. Int J Sport Nutr Exerc Metab 18(3):328–342CrossRefGoogle Scholar
  47. 47.
    Puente C, Abian-Vicen J, Del Coso J, Lara B, Salinero JJ (2018) The CYP1A2 -163C > A polymorphism does not alter the effects of caffeine on basketball performance. PLoS One 13(4):e0195943. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Salinero JJ, Lara B, Ruiz-Vicente D, Areces F, Puente-Torres C, Gallo-Salazar C, Pascual T, Del Coso J (2017) CYP1A2 genotype variations do not modify the benefits and drawbacks of caffeine during exercise: a pilot study. Nutrients. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Grgic J (2018) Are there non-responders to the ergogenic effects of caffeine ingestion on exercise performance? Nutrients 10:11. CrossRefGoogle Scholar
  50. 50.
    Takeda T, Imoto Y, Nagasawa H, Muroya M, Shiina M (2015) Premenstrual syndrome and premenstrual dysphoric disorder in Japanese collegiate athletes. J Pediatr Adolesc Gynecol 28(4):215–218. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Exercise Physiology LaboratoryCamilo José Cela UniversityMadridSpain
  2. 2.Faculty of Health SciencesUniversidad Francisco de VitoriaPozueloSpain
  3. 3.Faculty of Physical Activity and Sport SciencesUniversidad Politécnica de MadridMadridSpain
  4. 4.Centre for Sport StudiesRey Juan Carlos UniversityFuenlabradaSpain

Personalised recommendations