Advertisement

Influence of a 3-month low-calorie Mediterranean diet compared to the vegetarian diet on human gut microbiota and SCFA: the CARDIVEG Study

  • Giuditta Pagliai
  • Edda Russo
  • Elena Niccolai
  • Monica Dinu
  • Vincenzo Di Pilato
  • Alessandro Magrini
  • Gianluca Bartolucci
  • Simone Baldi
  • Marta Menicatti
  • Betti Giusti
  • Rossella Marcucci
  • Gian Maria Rossolini
  • Alessandro Casini
  • Francesco Sofi
  • Amedeo AmedeiEmail author
Original Contribution

Abstract

Purpose

We evaluated the effect of low-calorie mediterranean (MD) and vegetarian (VD) diets on gut microbiome (GM) composition and short-chain-fatty acids (SCFA) production.

Methods

We performed next generation sequencing (NGS) of 16S rRNA and SCFA analysis on fecal samples of 23 overweight omnivores (16 F; 7 M) with low-to-moderate cardiovascular risk. They were randomly assigned to a VD or MD, each lasting 3 months, with a crossover study design.

Results

Dietary interventions did not produce significant diversity in the GM composition at higher ranks (family and above), neither between nor within MD and VD, but they did it at genus level. MD significantly changed the abundance of Enterorhabdus, Lachnoclostridium and Parabacteroides, while VD significantly affected the abundance of Anaerostipes, Streptococcus, Clostridium sensu stricto, and Odoribacter. Comparison of the mean variation of each SCFA between MD and VD showed an opposite and statistically significant trend for propionic acid (+ 10% vs − 28%, respectively, p = 0.034). In addition, variations of SCFA were negatively correlated with changes of some inflammatory cytokines such as VEGF, MCP-1, IL-17, IP-10 and IL-12, only after MD. Finally, correlation analyses showed a potential relationship—modulated by the two diets—between changes of genera and changes of clinical and biochemical parameters.

Conclusions

A short-term dietary intervention with MD or VD does not induce major change in the GM, suggesting that a diet should last longer than 3 months for scratching the microbial resilience. Changes in SCFA production support their role in modulating the inflammatory response, thus mediating the anti-inflammatory and protective properties of MD.

Keywords

Microbiota SCFA Cardiovascular diseases Cytokines Mediterranean diet Vegetarian diet 

Notes

Acknowledgements

The research was founded with a grant from the regional contribution of “The Programma Attuativo Regionale (Toscana) funded by FAS (now FSC), Grant number 4042.16092014.066000029, the Italian Ministry of University and Research (MIUR) and the Foundation ‘Ente Cassa di Risparmio di Firenze’.

Author contributions

AA and FS conceived the study, participated in the design of the study, wrote the study protocol, and prepared the final version of the manuscript. FS has been responsible for recruitment and clinical evaluations. GP, ER and MD, participated in the design of the study. ER and SB conducted microbiota experiments. GB, SB and MM performed SCFA analysis. AM, EN and VP performed the statistical analysis. RM participated in the writing of the study protocol. AC, GMR and BG participated in the design of the study and critical revision of the manuscript for important intellectual content. EN, GP, ER wrote the manuscript. All authors read and approved the final manuscript. All authors read and commented on the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

394_2019_2050_MOESM1_ESM.pdf (1.9 mb)
Supplementary material 1 (PDF 1975 kb)

References

  1. 1.
    Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11:227–238CrossRefGoogle Scholar
  2. 2.
    Russell WR, Hoyles L, Flint HJ, Dumas ME (2013) Colonic bacterial metabolites and human health. Curr Opin Micr 16:246–254CrossRefGoogle Scholar
  3. 3.
    Salonen A, Lahti L, Salojärvim J, Holtrop G, Korpelam K, Duncan SH, Date P, Farquharson F, Johnstone AJ, Lobley GE, Louis P, Flint HJ, de Vos WM (2014) Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J 8:2218–2230CrossRefGoogle Scholar
  4. 4.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031CrossRefGoogle Scholar
  5. 5.
    Cerf-Bensussan N, Gaboriau-Routhiau V (2010) The immune system and the gut microbiota: friends or foes? Nat Rev Immunol 10:735–744CrossRefGoogle Scholar
  6. 6.
    Burcelin R, Garidou L, Pomié C (2012) Immuno-microbiota cross and talk: the new paradigm of metabolic diseases. Sem Immunol 24:67–74CrossRefGoogle Scholar
  7. 7.
    Everard A, Cani PD (2013) Diabetes, obesity and gut microbiota. Best Prac Res Clin Gastroenterol 27:73–83CrossRefGoogle Scholar
  8. 8.
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696CrossRefGoogle Scholar
  9. 9.
    Dinu M, Abbate R, Gensini GF, Casini A, Sofi F (2017) Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr 57:3640–3649CrossRefGoogle Scholar
  10. 10.
    Dinu M, Pagliai G, Casini A, Sofi F (2018) Mediterranean diet and multiple health outcomes: an umbrella review of meta-analyses of observational studies and randomised trials. Eur J Clin Nutr 72:30–43CrossRefGoogle Scholar
  11. 11.
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108CrossRefGoogle Scholar
  12. 12.
    De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, Serrazanetti DI, Di Cagno R, Ferrocino I, Lazzi C, Turroni S, Cocolin L, Brigidi P, Neviani E, Gobbetti M, O’Toole PW, Ercolini D (2016) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65:1812–1821CrossRefGoogle Scholar
  13. 13.
    Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K, Chehoud C, Albenberg LG, Nessel L, Gilroy E, Star J, Weljie AM, Flint HJ, Metz DC, Bennett MJ, Li H, Bushman FD, Lewis JD (2014) Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 65:63–72CrossRefGoogle Scholar
  14. 14.
    Shankar V, Gouda M, Moncivaiz J, Gordon A, Reo NV, Hussein L, Paliy O (2017) Differences in gut metabolites and microbial composition and functions between Egyptian and U.S. children are consistent with their diets. Systems 2:e00169-16Google Scholar
  15. 15.
    Sofi F, Dinu M, Pagliai G, Cesari F, Gori AM, Sereni A, Becatti M, Fiorillo C, Marcucci R, Casini A (2018) Low-calorie vegetarian vs. Mediterranean diets for reducing body weight and improving cardiovascular risk profile: the CARDIVEG study. Circulation 137:1103–1113CrossRefGoogle Scholar
  16. 16.
    Sofi F, Dinu M, Pagliai G, Cesari F, Marcucci R, Casini A (2016) Mediterranean vs. vegetarian diet for cardiovascular prevention (the CARDIVEG study): study protocol for a randomized controlled trial. Trials 17:233CrossRefGoogle Scholar
  17. 17.
    Russo E, Bacci G, Chiellini C, Fagorzi C, Niccolai E, Taddei E, Ricci F, Ringressi MN, Borrelli R, Melli F, Miloeva M, Bechi P, Mengoni A, Fani R, Amedei A (2018) Preliminary comparison of oral and intestinal human microbiota in patients with colorectal cancer: a pilot study. Front Microbiol 8:2699CrossRefGoogle Scholar
  18. 18.
    Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614–620CrossRefGoogle Scholar
  19. 19.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefGoogle Scholar
  20. 20.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefGoogle Scholar
  21. 21.
    Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59CrossRefGoogle Scholar
  22. 22.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596CrossRefGoogle Scholar
  23. 23.
    Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821CrossRefGoogle Scholar
  24. 24.
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60CrossRefGoogle Scholar
  25. 25.
    Zapala MA, Schork NJ (2006) Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc Natl Acad Sci USA 103:19430–19435CrossRefGoogle Scholar
  26. 26.
    Fagan A, Culhane AC, Higgins DG (2007) A multivariate analysis approach to the integration of proteomic and gene expression data. Proteomics 7:2162–2171CrossRefGoogle Scholar
  27. 27.
    Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270CrossRefGoogle Scholar
  28. 28.
    Zhang C, Björkman A, Cai K, Liu G, Wang C, Li Y, Xia H, Sun L, Kristiansen K, Wang J, Han J, Hammarström L, Pan-Hammarström Q (2018) Impact of a 3-months vegetarian diet on the gut microbiota and immune repertoire. Front Immunol 9:908CrossRefGoogle Scholar
  29. 29.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023CrossRefGoogle Scholar
  30. 30.
    Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73:1073–1078CrossRefGoogle Scholar
  31. 31.
    Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A, Louis P, McIntosh F, Johnstone AM, Lobley GE, Parkhill J, Flint HJ (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5:220–230CrossRefGoogle Scholar
  32. 32.
    Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, Corthier G, Furet JP (2009) The firmicutes/bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:123CrossRefGoogle Scholar
  33. 33.
    Hollister EB, Riehle K, Luna RA, Weidler EM, Rubio-Gonzales M, Mistretta TA, Doddapaneni HR, Metcalf GA, Muzny DM, Gibbs RA, Petrosino JF, Shulman RJ, Versalovic J (2015) Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome 3:36CrossRefGoogle Scholar
  34. 34.
    Geurts L, Lazarevic V, Derrien M, Everard A, Van Roye M, Knauf C, Valet P, Girard M, Muccioli GG, François P, de Vos WM, Schrenzel J, Delzenne NM, Cani PD (2011) Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front Microbiol 2:149CrossRefGoogle Scholar
  35. 35.
    Yan O, Gu Y, Li X, Yang W, Jia L, Chen C, Han X, Huang Y, Zhao L, Li P, Fang Z, Zhou J, Guan X, Ding Y, Wang S, Khan M, Xin Y, Li S, Ma Y (2017) Alterations of the Gut Microbiome in Hypertension. Front Cell Infect Microbiol 7:381CrossRefGoogle Scholar
  36. 36.
    Velasquez-Manoff M (2015) Gut microbiome: the peacekeepers. Nature 518:S3–S11CrossRefGoogle Scholar
  37. 37.
    Rajilić-Stojanović M, de Vos WM (2014) The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 38:996–1047CrossRefGoogle Scholar
  38. 38.
    Lakshminarayanan B, Harris HM, Coakley M, O’Sullivan O, Stanton C, Pruteanu M, Shanahan F, O’Toole PW, Ross RP, ELDERMET consortium (2013) Prevalence and characterization of Clostridium perfringens from the faecal microbiota of elderly Irish subjects. J Med Microbiol 62:457–466CrossRefGoogle Scholar
  39. 39.
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y et al (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–341CrossRefGoogle Scholar
  40. 40.
    Kosiewicz MM, Dryden GW, Chhabra A, Alard P (2014) Relationship between gut microbiota and development of T cell associated disease. FEBS Lett 588:4195–4206CrossRefGoogle Scholar
  41. 41.
    Kim CH, Park J, Kim M (2014) Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Net 14:277–288CrossRefGoogle Scholar
  42. 42.
    Meddah AT, Yazourh A, Desmet I, Risbourg B, Verstraete W, Romond MB (2001) The regulatory effects of whey retentate from bifidobacteria fermented milk on the microbiota of the simulator of the human intestinal microbial ecosystem (SHIME). J Appl Microbiol 6:1110–1117CrossRefGoogle Scholar
  43. 43.
    Scott KP, Martin JC, Campbell G, Mayer CD, Flint HJ (2006) Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans”. J Bacteriol 188:4340434–4340439CrossRefGoogle Scholar
  44. 44.
    Mortensen PB, Clausen MR (1996) Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand J Gastroenterol 216(s):132–148CrossRefGoogle Scholar
  45. 45.
    Sakurazawa T, Ohkusa T (2005) Cytotoxicity of organic acids produced by anaerobic intestinal bacteria on cultured epithelial cells. J Gastroenterol 40(6):600–609CrossRefGoogle Scholar
  46. 46.
    Yang J, Rose DJ (2016) The impact of long-term dietary pattern of fecal donor on in vitro fecal fermentation properties of inulin. Food Funct 7(4):1805–1813CrossRefGoogle Scholar
  47. 47.
    Richards LB, Li M, van Esch BCAM, Garssen J, Folkerts G (2016) The effects of short-chain fatty acids on the cardiovascular system. PharmaNutrition 4:68–111CrossRefGoogle Scholar
  48. 48.
    Casas R, Urpi-Sardà M, Sacanella E, Arranz S, Corella D, Castañer O, Lamuela-Raventós RM, Salas-Salvadó J, Lapetra J, Portillo MP, Estruch R (2017) Anti-inflammatory effects of the mediterranean diet in the early and late stages of atheroma plaque development. Med Inflamm 1:1–12CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Giuditta Pagliai
    • 1
  • Edda Russo
    • 1
  • Elena Niccolai
    • 1
  • Monica Dinu
    • 1
  • Vincenzo Di Pilato
    • 1
  • Alessandro Magrini
    • 1
  • Gianluca Bartolucci
    • 2
  • Simone Baldi
    • 1
  • Marta Menicatti
    • 2
  • Betti Giusti
    • 1
    • 3
  • Rossella Marcucci
    • 1
    • 3
  • Gian Maria Rossolini
    • 1
  • Alessandro Casini
    • 1
    • 4
  • Francesco Sofi
    • 1
    • 4
    • 5
  • Amedeo Amedei
    • 1
    • 6
    Email author
  1. 1.Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
  2. 2.Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical SciencesUniversity of FlorenceFlorenceItaly
  3. 3.Atherothrombotic Diseases UnitCareggi University HospitalFlorenceItaly
  4. 4.Clinical Nutrition UnitCareggi University HospitalFlorenceItaly
  5. 5.IRCCS Don Carlo Gnocchi FoundationFlorenceItaly
  6. 6.Department of BiomedicineCareggi University HospitalFlorenceItaly

Personalised recommendations