Advertisement

Effects of a formula with a probiotic Bifidobacterium lactis Supplement on the gut microbiota of low birth weight infants

  • Cheng Chi
  • Yong Xue
  • Ruixia Liu
  • Yanxin Wang
  • Na Lv
  • Huihui Zeng
  • Nicholas Buys
  • Baoli ZhuEmail author
  • Jing SunEmail author
  • Chenghong YinEmail author
Original Contribution

Abstract

Purpose

Low birth weight (LBW) infants have a less diverse gut microbiota, enriched in potential pathogens, which places them at high risk of systemic inflammation diseases. This study aimed to identify the differences in gut bacterial community structure between LBW infants who received probiotics and LBW infants who did not receive probiotics.

Methods

Forty-one infants were allocated to the non-probiotic group (N group) and 56 infants to the probiotic group (P group), according to whether the formula they received contained a probiotic Bifidobacterium lactis. Gut bacterial composition was identified with sequencing of the 16S rRNA gene in fecal samples collected at 14 days after birth.

Results

There was no significant difference between the alpha diversity of the two groups, while the beta diversity was significantly different (p < 0.05). Our results showed that Bifidobacterium and Lactobacillus (both p < 0.05) were enriched in the P group, while Veillonella, Dolosigranulum and Clostridium sensu stricto 1 (all p < 0.05) were enriched in the N group. Predicted metagenome function analysis revealed enhancement of fatty acids, peroxisome, starch, alanine, tyrosine and peroxisome pathways in the P group, and enhancement of plant pathogen, Salmonella and Helicobacter pylori infection pathways in the N group.

Conclusions

Probiotic supplement in formula may affect the composition, stability and function of LBW infants’ gut microbiota. LBW infants who receive probiotic intervention may benefit from gut microbiota that contains more beneficial bacteria.

Keywords

Low birth weight infant Gut microbiota Probiotics Metagenome function analysis 

Notes

Acknowledgements

This work was supported by the Beijing Natural Science Foundation (Grant No. S160003). The funding source had no role in the design and conduct of the study; collection, management, analysis and interpretation of the data; preparation, review or approval of the manuscript; and decision to submit the manuscript for publication.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no completing interests.

Ethical statement

The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics Committee of the Beijing Obstetrics and Gynecology Hospital (No. 2017-KY-027-01). Informed written consent was obtained from the parents of each infant.

References

  1. 1.
    Luyckx VA, Perico N, Somaschini M, Manfellotto D, Valensise H, Cetin I, Simeoni U, Allegaert K, Vikse BE, Steegers EA, Adu D, Montini G, Remuzzi G, Brenner BM (2017) A developmental approach to the prevention of hypertension and kidney disease: a report from the low birth weight and nephron number working group. Lancet 390(10092):424–428CrossRefGoogle Scholar
  2. 2.
    Wisgrill L, Wessely I, Spittler A, Forster-Waldl E, Berger A, Sadeghi K (2018) Human lactoferrin attenuates the proinflammatory response of neonatal monocyte-derived macrophages. Clin Exp Immunol 192(3):315–324CrossRefGoogle Scholar
  3. 3.
    Moschopoulos C, Kratimenos P, Koutroulis I, Shah BV, Mowes A, Bhandari V (2018) The neurodevelopmental perspective of surgical necrotizing enterocolitis: the role of the Gut-Brain Axis. Mediators Inflamm 2018:7456857CrossRefGoogle Scholar
  4. 4.
    Horbar JD, Edwards EM, Greenberg LT, Morrow KA, Soll RF, Buus-Frank ME, Buzas JS (2017) Variation in performance of neonatal intensive care units in the United States. JAMA Pediatr 171(3):e164396CrossRefGoogle Scholar
  5. 5.
    Brooks B, Olm MR, Firek BA, Baker R, Geller-McGrath D, Reimer SR, Soenjoyo KR, Yip JS, Dahan D, Thomas BC, Morowitz MJ, Banfield JF (2018) The developing premature infant gut microbiome is a major factor shaping the microbiome of neonatal intensive care unit rooms. Microbiome 6(1):112CrossRefGoogle Scholar
  6. 6.
    Hu H, Johani K, Gosbell IB, Jacombs AS, Almatroudi A, Whiteley GS, Deva AK, Jensen S, Vickery K (2015) Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in biofilms: combined results of conventional culture, pyrosequencing, scanning electron microscopy, and confocal laser microscopy. J Hosp Infect 91(1):35–44CrossRefGoogle Scholar
  7. 7.
    La Rosa PS, Warner BB, Zhou Y, Weinstock GM, Sodergren E, Hall-Moore CM, Stevens HJ, Bennett WE, Shaikh N, Linneman LA, Hoffmann JA, Hamvas A, Deych E, Shands BA, Shannon WD, Tarr PI (2014) Patterned progression of bacterial populations in the premature infant gut. Proc Natl Acad Sci USA 111(34):12522–12527CrossRefGoogle Scholar
  8. 8.
    Lin HC, Wu SF, Underwood M (2011) Necrotizing enterocolitis. N Engl J Med 364(19):1878–1879Google Scholar
  9. 9.
    Tomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K, Ostatnikova D (2015) Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav 138:179–187CrossRefGoogle Scholar
  10. 10.
    Khashan AS, Kenny LC, Lundholm C, Kearney PM, Gong T, McNamee R, Almqvist C (2015) Gestational age and birth weight and the risk of childhood type 1 diabetes: a population-based cohort and sibling design study. Diabetes Care 38(12):2308–2315CrossRefGoogle Scholar
  11. 11.
    Cong X, Henderson WA, Graf J, McGrath JM (2015) Early life experience and gut microbiome: the brain-gut-microbiota signaling system. Adv Neonatal Care 15(5):314–323CrossRefGoogle Scholar
  12. 12.
    Section on Breastfeeding (2012) Breastfeeding and the use of human milk. Pediatrics 129(3):e827–e841CrossRefGoogle Scholar
  13. 13.
    Wilson E, Edstedt Bonamy AK, Bonet M, Toome L, Rodrigues C, Howell EA, Cuttini M, Zeitlin J, EPICE Research Group (2018) Room for improvement in breast milk feeding after very preterm birth in Europe: Results from the EPICE cohort. Matern Child Nutr 14(1)Google Scholar
  14. 14.
    Manzoni P, Rinaldi M, Cattani S, Pugni L, Romeo MG, Messner H, Stolfi I, Decembrino L, Laforgia N, Vagnarelli F, Memo L, Bordignon L, Saia OS, Maule M, Gallo E, Mostert M, Magnani C, Quercia M, Bollani L, Pedicino R, Renzullo L, Betta P, Mosca F, Ferrari F, Magaldi R, Stronati M, Farina D (2009) Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: a randomized trial. JAMA 302(13):1421–1428CrossRefGoogle Scholar
  15. 15.
    Braga TD, da Silva GA, de Lira PI, de Carvalho Lima M (2011) Efficacy of Bifidobacterium breve and Lactobacillus casei oral supplementation on necrotizing enterocolitis in very-low-birth-weight preterm infants: a double-blind, randomized, controlled trial. Am J Clin Nutr 93(1):81–86CrossRefGoogle Scholar
  16. 16.
    Costeloe K, Hardy P, Juszczak E, Wilks M, Millar MR (2016) Bifidobacterium breve BBG-001 in very preterm infants: a randomised controlled phase 3 trial. Lancet 387(10019):649–660CrossRefGoogle Scholar
  17. 17.
    Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963CrossRefGoogle Scholar
  18. 18.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461CrossRefGoogle Scholar
  19. 19.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267CrossRefGoogle Scholar
  20. 20.
    Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rrna analysis. Nucleic Acids Res 37(database issue):D141–D145CrossRefGoogle Scholar
  21. 21.
    Kiserud T, Benachi A, Hecher K, Perez RG, Carvalho J, Piaggio G, Platt LD (2018) The World Health Organization fetal growth charts: concept, findings, interpretation, and application. Am J Obstet Gynecol 218(2S):S619–S629CrossRefGoogle Scholar
  22. 22.
    Linsell L, Malouf R, Morris J, Kurinczuk JJ, Marlow N (2015) Prognostic factors for poor cognitive development in children born very preterm or with very low birth weight: a systematic review. JAMA Pediatr 169(12):1162–1172CrossRefGoogle Scholar
  23. 23.
    Sun J, Marwah G, Westgarth M, Buys N, Ellwood D, Gray PH (2017) Effects of probiotics on necrotizing enterocolitis, sepsis, intraventricular hemorrhage, mortality, length of hospital stay, and weight gain in very preterm infants: a meta-analysis. Adv Nutr 8(5):749–763CrossRefGoogle Scholar
  24. 24.
    Millar M, Seale J, Greenland M, Hardy P, Juszczak E, Wilks M, Panton N, Costeloe K, Wade WG (2017) The microbiome of infants recruited to a randomised placebo-controlled probiotic trial (PiPS Trial). EBioMedicine 20:255–262CrossRefGoogle Scholar
  25. 25.
    Bazanella M, Maier TV, Clavel T, Lagkouvardos I, Lucio M, Maldonado-Gòmez MX, Autran C, Walter J, Bode L, Schmitt-Kopplin P, Haller D (2017) Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. Am J Clin Nutr 106(5):1274–1286Google Scholar
  26. 26.
    Hays S, Jacquot A, Gauthier H, Kempf C, Beissel A, Pidoux O, Jumas-Bilak E, Decullier E, Lachambre E, Beck L, Cambonie G, Putet G, Claris O, Picaud JC (2016) Probiotics and growth in preterm infants: a randomized controlled trial, PREMAPRO study. Clin Nutr 35(4):802–811CrossRefGoogle Scholar
  27. 27.
    Nandhini LP, Biswal N, Adhisivam B, Mandal J, Bhat BV, Mathai B (2016) Synbiotics for decreasing incidence of necrotizing enterocolitis among preterm neonates—a randomized controlled trial. J Matern Fetal Neonatal Med 29(5):821–825CrossRefGoogle Scholar
  28. 28.
    Underwood MA, Salzman NH, Bennett SH, Barman M, Mills DA, Marcobal A, Tancredi DJ, Bevins CL, Sherman MP (2009) A randomized placebo-controlled comparison of 2 prebiotic/probiotic combinations in preterm infants: impact on weight gain, intestinal microbiota, and fecal short-chain fatty acids. J Pediatr Gastroenterol Nutr 48(2):216–225CrossRefGoogle Scholar
  29. 29.
    Ruiz-Moyano S, Totten SM, Garrido DA, Smilowitz JT, German JB, Lebrilla CB, Mills DA (2013) Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve. Appl Environ Microbiol 79(19):6040–6049CrossRefGoogle Scholar
  30. 30.
    Poppleton DI, Duchateau M, Hourdel V, Matondo M, Flechsler J, Klingl A, Beloin C, Gribaldo S (2017) Outer membrane proteome of veillonella parvula: a diderm firmicute of the human microbiome. Front Microbiol 8:1215CrossRefGoogle Scholar
  31. 31.
    Wang H, Dai W, Feng X, Zhou Q, Wang H, Yang Y, Li S, Zheng Y (2018) Microbiota composition in upper respiratory tracts of healthy children in shenzhen, china, differed with respiratory sites and ages. Biomed Res Int 2018:6515670Google Scholar
  32. 32.
    Schäffler H, Breitrück A (2018) Clostridium difficile—from colonization to infection. Front Microbiol 9:646CrossRefGoogle Scholar
  33. 33.
    Leach ST, Lui K, Naing Z, Dowd SE, Mitchell HM, Day AS (2015) Multiple opportunistic pathogens, but not pre-existing inflammation, may be associated with necrotizing enterocolitis. Dig Dis Sci 60(12):3728–3734CrossRefGoogle Scholar
  34. 34.
    Young GR, Smith DL, Embleton ND, Berrington JE, Schwalbe EC, Cummings SP, van der Gast CJ, Lanyon C (2017) Reducing viability bias in analysis of gut microbiota in preterm infants at risk of NEC and sepsis. Front Cell Infect Microbiol 7:237CrossRefGoogle Scholar
  35. 35.
    Esaiassen E, Hjerde E, Cavanagh JP, Pedersen T, Andresen JH, Rettedal SI, Støen R, Nakstad B, Willassen NP, Klingenberg C (2018) Effects of probiotic supplementation on the gut microbiota and antibiotic resistome development in preterm infants. Front Pediatr 6:347CrossRefGoogle Scholar
  36. 36.
    Jacquot A, Neveu D, Aujoulat F, Mercier G, Marchandin H, Jumas-Bilak E, Picaud JC (2011) Dynamics and clinical evolution of bacterial gut microflora in extremely premature patients. J Pediatr 158(3):390–396CrossRefGoogle Scholar
  37. 37.
    Arboleya S, Binetti A, Salazar N, Fernández N, Solís G, Hernández-Barranco A, Margolles A, de Los Reyes-Gavilán CG, Gueimonde M (2012) Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol 79(3):763–772CrossRefGoogle Scholar
  38. 38.
    Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20(1):10–16CrossRefGoogle Scholar
  39. 39.
    Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AG, Pettersson S, Conway S (2004) Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 5(1):104–112CrossRefGoogle Scholar
  40. 40.
    Patel AL, Mutlu EA, Sun Y, Koenig L, Green S, Jakubowicz A, Mryan J, Engen P, Fogg L, Chen AL, Pombar X, Meier PP, Keshavarzian A (2016) Longitudinal survey of microbiota in hospitalized preterm very-low-birth-weight infants. J Pediatr Gastroenterol Nutr 62(2):292–303CrossRefGoogle Scholar
  41. 41.
    Huang W, Cheng Z, Lei S, Liu L, Lv X, Chen L, Wu M, Wang C, Tian B, Song Y (2018) Community composition, diversity, and metabolism of intestinal microbiota in cultivated European eel (Anguilla anguilla). Appl Microbiol Biotechnol 102(9):4143–4157CrossRefGoogle Scholar
  42. 42.
    Quagliariello A, Del Chierico F, Russo A, Reddel S, Conte G, Lopetuso LR, Ianiro G, Dallapiccola B, Cardona F, Gasbarrini A, Putignani L (2018) Gut microbiota profiling and gut-brain crosstalk in children affected by pediatric acute-onset neuropsychiatric syndrome and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. Front Microbiol 9:675CrossRefGoogle Scholar
  43. 43.
    DiFrancisco-Donoghue J, Rabin E, Lamberg EM, Werner WG (2014) Effects of tyrosine on Parkinson’s Disease: a randomized, double-blind, Placebo-Controlled Trial. Mov Disord Clin Pract 1(4):348–353CrossRefGoogle Scholar
  44. 44.
    Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13(9):R79CrossRefGoogle Scholar
  45. 45.
    Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N, Casella G, Drew JC, Ilonen J, Knip M, Hyöty H, Veijola R, Simell T, Simell O, Neu J, Wasserfall CH, Schatz D, Atkinson MA, Triplett EW (2011) Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 6(10):e25792CrossRefGoogle Scholar
  46. 46.
    Pettengill M, Matute JD, Tresenriter M, Hibbert J, Burgner D, Richmond P, Millán JL, Ozonoff A, Strunk T, Currie A, Levy O (2017) Human alkaline phosphatase dephosphorylates microbial products and is elevated in preterm neonates with a history of late-onset sepsis. PLoS One 12(4):e0175936CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Internal Medicine, Beijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijingChina
  2. 2.College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
  3. 3.Department of Central Laboratory, Beijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijingChina
  4. 4.CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of MicrobiologyChinese Academy of ScienceBeijingChina
  5. 5.Department of Neonatology, Beijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijingChina
  6. 6.School of MedicineGriffith UniversityGold CoastAustralia
  7. 7.Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia

Personalised recommendations