Advertisement

Serum 25-hydoxyvitamin D concentrations in relation to Hashimoto’s thyroiditis: a systematic review, meta-analysis and meta-regression of observational studies

  • Mario Štefanić
  • Stana TokićEmail author
Review
  • 29 Downloads

Abstract

Purpose

Available evidence on the relation between vitamin D status and Hashimoto’s thyroiditis (HT) remains inconsistent. We conducted a meta-analysis of serum 25-hydoxyvitamin [25(OH)D] concentrations in HT, and examined how the strength of this relationship varies as a function of several moderating factors.

Methods

Twenty-six observational, case–control studies, published before Feb 20, 2018, were located using Google Scholar, PubMed, Web of Science, SCOPUS, LILACS and SCIELO. Study quality was assessed and random-effects models were used, along with univariate mixed-effect meta-regression, for all analyses.

Results

The 25 studies (2695 cases, 2263 controls) confirmed lower serum 25(OH)D concentrations in HT compared to healthy controls, with Cohen’s d − 0.62 (95% CI − 0.89, − 0.34; P = 1.5 × 10−5) and substantial heterogeneity between studies. HT showed an odds ratio (OR) of 3.21 (1.94–5.3; P = 5.7 × 10−6) for 25(OH)D deficiency (cut-off 20 ng/mL) against healthy controls. A corrected Cohen’s d of − 0.43 [(− 0.76, − 0.09), P = 0.013] was obtained by trim-and-fill adjustment for publication bias. The association was consistent across Asian and European studies, pediatric and adult population, high- and moderate-quality studies. Near-equatorial latitudes (< 35° N/S, P = 3.4 × 10−4) and moderate-income economy (gross national income (GNI) 1000 < US$ < 12,000, P = 0.012) were associated with more discrepant 25(OH)D concentrations between the groups. Higher latitude (P = 0.0047), and higher mean body mass index (P = 0.006, 10 studies) were associated with smaller Cohen’s d by univariate meta-regression, with evidence of nonlinear moderation by GNI (P = 3.5 × 10−6), and mean serum thyrotropin in affected individuals (P = 0.017, 21 studies).

Conclusion

The present work shows a significant association between circulating 25(OH)D and HT, partly resolves mixed findings by identifying the empirical moderators contributing to overall heterogeneity, and highlights HT patient groups and the conditions under which the association is strongest.

Keywords

Vitamin D Thyroiditis Autoimmune Meta-analysis Effect modifier Epidemiologic 

Notes

Acknowledgements

This work was supported by Josip Juraj Strossmayer University of Osijek (Grant No. VIF2016MEFOS-37).

Author contributions

MS designed the research, analyzed the data, and performed the statistical analysis; MS and ST conducted the research and interpreted the results. Both authors provided critical revisions of the systematic review and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

394_2019_1991_MOESM1_ESM.doc (4.1 mb)
Supplementary material 1 (DOC 4152 kb)

References

  1. 1.
    Pearce EN, Farwell AP, Braverman LE (2003) Thyroiditis. N Engl J Med 348(26):2646–2655Google Scholar
  2. 2.
    Booth DR, Ding N, Parnell GP, Shahijanian F, Coulter S, Schibeci SD, Atkins AR, Stewart GJ, Evans RM, Downes M, Liddle C (2016) Cistromic and genetic evidence that the vitamin D receptor mediates susceptibility to latitude-dependent autoimmune diseases. Genes Immun 17(4):213–219.  https://doi.org/10.1038/gene.2016.12 Google Scholar
  3. 3.
    Zeitelhofer M, Adzemovic MZ, Gomez-Cabrero D, Bergman P, Hochmeister S, N’diaye M, Paulson A, Ruhrmann S, Almgren M, Tegnér JN, Ekström TJ, Guerreiro-Cacais AO, Jagodic M (2017) Functional genomics analysis of vitamin D effects on CD4 + T cells in vivo in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 114(9):E1678–E1687.  https://doi.org/10.1073/pnas.1615783114 Google Scholar
  4. 4.
    Dankers W, Colin EM, van Hamburg JP, Lubberts E (2017) Vitamin D in Autoimmunity: molecular Mechanisms and Therapeutic Potential. Front Immunol 7:697.  https://doi.org/10.3389/fimmu.2016.00697 Google Scholar
  5. 5.
    Kim D (2017) The role of vitamin D in thyroid diseases. Int J Mol Sci 18(9):E1949.  https://doi.org/10.3390/ijms18091949 Google Scholar
  6. 6.
    Nettore IC, Albano L, Ungaro P, Colao A, Macchia PE (2017) Sunshine vitamin and thyroid. Rev Endocr Metab Disord 18(3):347–354.  https://doi.org/10.1007/s11154-017-9406-3 Google Scholar
  7. 7.
    Hu S, Rayman MP (2017) Multiple nutritional factors and the risk of Hashimoto’s thyroiditis. Thyroid 27(5):597–610.  https://doi.org/10.1089/thy.2016.0635 Google Scholar
  8. 8.
    Wang J, Lv S, Chen G, Gao C, He J, Zhong H, Xu Y (2015) Meta-analysis of the association between vitamin D and autoimmune thyroid disease. Nutrients 7(4):2485–2498.  https://doi.org/10.3390/nu7042485 Google Scholar
  9. 9.
    Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135.  https://doi.org/10.1186/1471-2288-14-135 Google Scholar
  10. 10.
    Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P (2018) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. The Ottawa Hospital Research Institute. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 22 Feb 2018
  11. 11.
    Wacker M, Holick MF (2013) Sunlight and vitamin D: a global perspective for health. Dermatoendocrinol 5(1):51–108.  https://doi.org/10.4161/derm.24494 Google Scholar
  12. 12.
    Grant WB, Bhattoa HP, Pludowski P (2017) Determinants of vitamin D deficiency from sun exposure: a global perspective. In: Feldman D, Pike JW, Bouillon R, Giovannucci E, Goltzman D, Hewison M (eds) Vitamin D: Volume 2: health, disease and therapeutics, 4th edn. Academic Press, London, pp 79–86Google Scholar
  13. 13.
    Akaike H (1981) Likelihood of a model and information criteria. J Econom 16:3–14Google Scholar
  14. 14.
    Tamer G, Arik S, Tamer I, Coksert D (2011) Relative vitamin D insufficiency in Hashimoto’s thyroiditis. Thyroid 21(8):891–896.  https://doi.org/10.1089/thy.2009.0200 Google Scholar
  15. 15.
    Kivity S, Agmon-Levin N, Zisappl M, Shapira Y, Nagy EV, Dankó K, Szekanecz Z, Langevitz P, Shoenfeld Y (2011) Vitamin D and autoimmune thyroid diseases. Cell Mol Immunol 8(3):243–247.  https://doi.org/10.1038/cmi.2010.73 Google Scholar
  16. 16.
    Camurdan OM, Döğer E, Bideci A, Celik N, Cinaz P (2012) Vitamin D status in children with Hashimoto thyroiditis. J Pediatr Endocrinol Metab 25(5–6):467–470Google Scholar
  17. 17.
    Dellal F, Niyazoglu M, Ademoglu E, Gorar S, Candan Z, Bekdemir H, Uc ZA, Senes M, Ozderya A, Aral Y (2013) Evaluation of Serum trace elements and vitamin levels in Hashimoto’s thyroiditis: single centre experience from Turkey. Open J Endocr Metab Dis 3(4):236–240.  https://doi.org/10.4236/ojemd.2013.34031 Google Scholar
  18. 18.
    Bozkurt NC, Karbek B, Ucan B, Sahin M, Cakal E, Ozbek M, Delibasi T (2013) The association between severity of vitamin D deficiency and Hashimoto’s thyroiditis. Endocr Pract 19(3):479–484.  https://doi.org/10.4158/EP12376.OR Google Scholar
  19. 19.
    Mansournia N, Mansournia MA, Saeedi S, Dehghan J (2014) The association between serum 25OHD levels and hypothyroid Hashimoto’s thyroiditis. J Endocrinol Invest 37(5):473–476.  https://doi.org/10.1007/s40618-014-0064-y Google Scholar
  20. 20.
    Botelho I (2014) Prevalence of Vitamin D insufficiency in patients with Hashimoto’s thyroiditis and its relationship with thyroid autoimmunity. Master’s thesis, Faculdade de Ciências Médicas, Universidade Estadual de Campinas Campinas, SP (Brasil). http://repositorio.unicamp.br/handle/REPOSIP/308788. Accessed 23 Sept 2018
  21. 21.
    Unal AD, Tarcin O, Parildar H, Cigerli O, Eroglu H, Demirag NG (2014) Vitamin D deficiency is related to thyroid antibodies in autoimmune thyroiditis. Cent Eur J Immunol 39(4):493–497.  https://doi.org/10.5114/ceji.2014.47735 Google Scholar
  22. 22.
    Ma J, Wu D, Li C, Fan C, Chao N, Liu J, Li Y, Wang R, Miao W, Guan H, Shan Z, Teng W (2015) Lower serum 25-hydroxyvitamin D level is associated with 3 types of autoimmune thyroid diseases. Medicine (Baltimore) 94(39):e1639.  https://doi.org/10.1097/MD.0000000000001639 Google Scholar
  23. 23.
    Lizis-Kolus K (2014) Ocena wpływu niedoboru witaminy D na przebieg choroby Hashimoto u chorych w województwie świętokrzyskim. Dissertation, Collegium Medicum, Wydział Lekarski, Uniwersytet Jagielloński, Kraków (Poland). http://dl.cm-uj.krakow.pl:8080/dlibra/docmetadata?id=4036. Accessed 23 Sept 2018
  24. 24.
    Maciejewski A, Wójcicka M, Roszak M, Losy J, Łącka K (2015) Assessment of vitamin D level in autoimmune thyroiditis patients and a control group in the Polish population. Adv Clin Exp Med 24(5):801–806.  https://doi.org/10.17219/acem/29183 Google Scholar
  25. 25.
    Evliyaoğlu O, Acar M, Özcabı B, Erginöz E, Bucak F, Ercan O, Kucur M (2015) Vitamin D deficiency and Hashimoto’s thyroiditis in children and adolescents: a critical vitamin D level for this Association? J Clin Res Pediatr Endocrinol 7(2):128–133.  https://doi.org/10.4274/jcrpe.2011 Google Scholar
  26. 26.
    Şıklar Z, Karataş D, Doğu F, Hacıhamdioğlu B, İkincioğulları A, Berberoğlu M (2016) Regulatory T cells and vitamin D status in children with chronic autoimmune thyroiditis. J Clin Res Pediatr Endocrinol 8(3):276–281.  https://doi.org/10.4274/jcrpe.2766 Google Scholar
  27. 27.
    Yasmeh J, Farpour F, Rizzo V, Kheradnam S, Sachmechi I (2016) Hashimoto thyroiditis not associated with vitamin D deficiency. Endocr Pract 22(7):809–813.  https://doi.org/10.4158/EP15934.OR Google Scholar
  28. 28.
    Prasad I, Kumari R, Saran A (2016) Vitamin D evaluation in autoimmune thyroid diseases. Int J Contemp Med Res 3(12):3415–3418Google Scholar
  29. 29.
    Guleryuz B, Akin F, Ata MT, Dalyanoglu MM, Turgut S (2016) Vitamin-D receptor (VDR) gene polymorphisms (TaqI, FokI) in Turkish patients with Hashimoto’s thyroiditis: relationship to the levels of Vit-D and cytokines. Endocr Metab Immune Disord Drug Targets 16(2):131–139.  https://doi.org/10.2174/1871530316666160728092613 Google Scholar
  30. 30.
    Sönmezgöz E, Ozer S, Yilmaz R, Önder Y, Bütün I, Bilge S (2016) Hypovitaminosis D in children with Hashimoto’s thyroiditis. Rev Med Chil 144(5):611–616.  https://doi.org/10.4067/S0034-98872016000500009 Google Scholar
  31. 31.
    Metwalley KA, Farghaly HS, Sherief T, Hussein A (2016) Vitamin D status in children and adolescents with autoimmune thyroiditis. J Endocrinol Invest 39(7):793–797.  https://doi.org/10.1007/s40618-016-0432-x Google Scholar
  32. 32.
    Kim D (2016) Low vitamin D status is associated with hypothyroid Hashimoto’s thyroiditis. Hormones (Athens) 15(3):385–393.  https://doi.org/10.14310/horm.2002.1681 Google Scholar
  33. 33.
    Priya R, Kalra P, Vashuda KC (2016) Autoimmune hypothyroidism and vitamin D levels. J Med Sci Clin Res 4(2):9453–9457.  https://doi.org/10.18535/jmscr/v4i02.57 Google Scholar
  34. 34.
    Giovinazzo S, Vicchio TM, Certo R, Alibrandi A, Palmieri O, Campennì A, Cannavò S, Trimarchi F, Ruggeri RM (2017) Vitamin D receptor gene polymorphisms/haplotypes and serum 25(OH)D(3) levels in Hashimoto’s thyroiditis. Endocrine 55(2):599–606.  https://doi.org/10.1007/s12020-016-0942-5 Google Scholar
  35. 35.
    Ke W, Sun T, Zhang Y, He L, Wu Q, Liu J, Zha B (2017) 25-hydroxyvitamin D serum level in Hashimoto’s thyroiditis, but not Graves’ disease is relatively deficient. Endocr J 64(6):581–587.  https://doi.org/10.1507/endocrj.EJ16-0547 Google Scholar
  36. 36.
    Nalbant A, Gokosmanoglu F, Cinemre H, Varim C, Kaya T, Ergenc H (2017) The relation between serum vitamin D levels and Hashimoto thyroiditis in women. Kuwait Med J 49:223–226Google Scholar
  37. 37.
    Yavuzer H, Işık S, Cengiz M, Bolayırlı IM, Döventaş A, Erdinçler DS (2017) The relationship between vitamin D levels and receptor activator of nuclear factor ligand in Hashimoto’s thyroiditis. Med Bull Haseki 55:261–268Google Scholar
  38. 38.
    Rezaee H, Najafipour F, Ranjdoust F, Sadra V, Hamishekar H, Najafipour M, Zareizadeh J, Janipour M (2017) Evaluation of serum vitamin D levels in patients with Hashimoto’s thyroiditis. Int J Adv Biotechnol Res 8:890–895Google Scholar
  39. 39.
    Perga S, Martire S, Montarolo F, Giordani I, Spadaro M, Bono G, Corvisieri S, Messuti I, Panzica G, Orlandi F, Bertolotto A (2018) The footprints of poly-autoimmunity: evidence for common biological factors involved in multiple sclerosis and Hashimoto’s thyroiditis. Front Immunol 9:311.  https://doi.org/10.3389/fimmu.2018.00311 Google Scholar
  40. 40.
    Viechtbauer W, Cheung MW (2010) Outlier and influence diagnostics for meta-analysis. Res Synth Methods 1(2):112–125.  https://doi.org/10.1002/jrsm.11 Google Scholar
  41. 41.
    Pilz S, März W, Cashman KD, Kiely ME, Whiting SJ, Holick MF et al (2018) Rationale and plan for vitamin D food fortification: a review and guidance paper. Front Endocrinol (Lausanne) 9:373.  https://doi.org/10.3389/fendo.2018.00373 Google Scholar
  42. 42.
    Jeffery LE, Raza K, Hewison M (2016) Vitamin D in rheumatoid arthritis-towards clinical application. Nat Rev Rheumatol 12(4):201–210.  https://doi.org/10.1038/nrrheum.2015.140 Google Scholar
  43. 43.
    Edwards MH, Cole ZA, Harvey NC, Cooper C (2014) The global epidemiology of vitamin D status. J Aging Res Clin Pract 3(3):148–158Google Scholar
  44. 44.
    Kimlin MG, Lucas RM, Harrison SL, van der Mei I, Armstrong BK, Whiteman DC, Kricker A, Nowak M, Brodie AM, Sun J (2014) The contributions of solar ultraviolet radiation exposure and other determinants to serum 25-hydroxyvitamin D concentrations in Australian adults: the AusD Study. Am J Epidemiol 179(7):864–874.  https://doi.org/10.1093/aje/kwt446 Google Scholar
  45. 45.
    Nimitphong H, Holick MF (2013) Vitamin D status and sun exposure in southeast Asia. Dermatoendocrinol 5(1):34–37.  https://doi.org/10.4161/derm.24054 Google Scholar
  46. 46.
    Jungert A, Spinneker A, Nagel A, Neuhäuser-Berthold M (2014) Dietary intake and main food sources of vitamin D as a function of age, sex, vitamin D status, body composition, and income in an elderly German cohort. Food Nutr Res 58:23632.  https://doi.org/10.3402/fnr.v58.23632 Google Scholar
  47. 47.
    Rabenberg M, Scheidt-Nave C, Busch MA, Rieckmann N, Hintzpeter B, Mensink GB (2015) Vitamin D status among adults in Germany–results from the German Health Interview and Examination Survey for Adults (DEGS1). BMC Public Health 15:641.  https://doi.org/10.1186/s12889-015-2016-7 Google Scholar
  48. 48.
    Moore CE, Radcliffe JD, Liu Y (2014) Vitamin D intakes of adults differ by income, gender and race/ethnicity in the U.S.A., 2007 to 2010. Public Health Nutr 17(4):756–763.  https://doi.org/10.1017/S1368980013002929 Google Scholar
  49. 49.
    Arabi A, El Rassi R, El-Hajj Fuleihan G (2010) Hypovitaminosis D in developing countries-prevalence, risk factors and outcomes. Nat Rev Endocrinol 6(10):550–561.  https://doi.org/10.1038/nrendo.2010.146 Google Scholar
  50. 50.
    Novaković R, Cavelaars A, Geelen A, Nikolić M, Altaba II, Viñas BR, Ngo J, Golsorkhi M, Medina MW, Brzozowska A, Szczecinska A, de Cock D, Vansant G, Renkema M, Majem LS, Moreno LA, Glibetić M, Gurinović M, van’t Veer P, de Groot LC (2014) Socio-economic determinants of micronutrient intake and status in Europe: a systematic review. Public Health Nutr 17(5):1031–1045.  https://doi.org/10.1017/S1368980013001341 Google Scholar
  51. 51.
    Moore CE, Radcliffe JD, Liu Y (2014) Vitamin D intakes of children differ by race/ethnicity, sex, age, and income in the United States, 2007 to 2010. Nutr Res 34(6):499–506.  https://doi.org/10.1016/j.nutres.2014.06.002 Google Scholar
  52. 52.
    Voortman T, van den Hooven EH, Heijboer AC, Hofman A, Jaddoe VW, Franco OH (2015) Vitamin D deficiency in school-age children is associated with sociodemographic and lifestyle factors. J Nutr 145(4):791–798.  https://doi.org/10.3945/jn.114.208280 Google Scholar
  53. 53.
    Darmon N, Drewnowski A (2008) Does social class predict diet quality? Am J Clin Nutr 87(5):1107–1117Google Scholar
  54. 54.
    Chaudhary A, Gustafson D, Mathys A (2018) Multi-indicator sustainability assessment of global food systems. Nat Commun 9(1):848.  https://doi.org/10.1038/s41467-018-03308-7 Google Scholar
  55. 55.
    Cashman KD, Sheehy T, O’Neill CM (2018) Is vitamin D deficiency a public health concern for low middle income countries? A systematic literature review. Eur J Nutr 58(1):433–453.  https://doi.org/10.1007/s00394-018-1607-3 Google Scholar
  56. 56.
    Sørensen TH, Olsen KR, Vedsted P (2009) Association between general practice referral rates and patients’ socioeconomic status and access to specialized health care a population-based nationwide study. Health Policy 92(2–3):180–186.  https://doi.org/10.1016/j.healthpol.2009.03.011 Google Scholar
  57. 57.
    Hansen RP, Olesen F, Sørensen HT, Sokolowski I, Søndergaard J (2008) Socioeconomic patient characteristics predict delay in cancer diagnosis: a Danish cohort study. BMC Health Serv Res 8:49.  https://doi.org/10.1186/1472-6963-8-49 Google Scholar
  58. 58.
    Beedasy J (2010) Rural designations and geographic access to tertiary healthcare in Idaho. Online J Rural Res Policy 5(2):1–21.  https://doi.org/10.4148/ojrrp.v5i2.191 Google Scholar
  59. 59.
    Hauch A, Al-Qurayshi Z, Friedlander P, Kandil E (2014) Association of socioeconomic status, race, and ethnicity with outcomes of patients undergoing thyroid surgery. JAMA Otolaryngol Head Neck Surg 140(12):1173–1183.  https://doi.org/10.1001/jamaoto.2014.1745 Google Scholar
  60. 60.
    Taylor PN, Iqbal A, Minassian C, Sayers A, Draman MS, Greenwood R, Hamilton W, Okosieme O, Panicker V, Thomas SL, Dayan C (2014) Falling threshold for treatment of borderline elevated thyrotropin levels-balancing benefits and risks: evidence from a large community-based study. JAMA Intern Med 174(1):32–39.  https://doi.org/10.1001/jamainternmed.2013.11312 Google Scholar
  61. 61.
    Mammen JS, McGready J, Oxman R, Chia CW, Ladenson PW, Simonsick EM (2015) Thyroid hormone therapy and risk of thyrotoxicosis in community-resident older adults: findings from the Baltimore longitudinal study of aging. Thyroid 25(9):979–986.  https://doi.org/10.1089/thy.2015.0180 Google Scholar
  62. 62.
    Somwaru LL, Arnold AM, Cappola AR (2011) Predictors of thyroid hormone initiation in older adults: results from the cardiovascular health study. J Gerontol A Biol Sci Med Sci 66(7):809–814.  https://doi.org/10.1093/gerona/glr063 Google Scholar
  63. 63.
    Olmos RD, Figueiredo RC, Aquino EM, Lotufo PA, Bensenor IM (2015) Gender, race and socioeconomic influence on diagnosis and treatment of thyroid disorders in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Braz J Med Biol Res 48(8):751–758.  https://doi.org/10.1590/1414-431X20154445 Google Scholar
  64. 64.
    Thvilum M, Brandt F, Brix TH, Hegedüs L (2014) Hypothyroidism is a predictor of disability pension and loss of labor market income: a Danish register-based study. J Clin Endocrinol Metab 99(9):3129–3135.  https://doi.org/10.1210/jc.2014-1407 Google Scholar
  65. 65.
    Ott J, Promberger R, Kober F, Neuhold N, Tea M, Huber JC, Hermann M (2011) Hashimoto’s thyroiditis affects symptom load and quality of life unrelated to hypothyroidism: a prospective case-control study in women undergoing thyroidectomy for benign goiter. Thyroid 21(2):161–167.  https://doi.org/10.1089/thy.2010.0191 Google Scholar
  66. 66.
    Rhee CM, Chen Y, You AS, Brunelli SM, Kovesdy CP, Budoff MJ, Brent GA, Kalantar-Zadeh K, Nguyen DV (2017) Thyroid status, quality of life, and mental health in patients on hemodialysis. Clin J Am Soc Nephrol 12(8):1274–1283.  https://doi.org/10.2215/CJN.13211216 Google Scholar
  67. 67.
    Samuels MH (2014) Psychiatric and cognitive manifestations of hypothyroidism. Curr Opin Endocrinol Diabetes Obes 21(5):377–383.  https://doi.org/10.1097/MED.0000000000000089 Google Scholar
  68. 68.
    Vigário Pdos S, Vaisman F, Coeli CM, Ward L, Graf H, Carvalho G, Júnior RM, Vaisman M (2013) Inadequate levothyroxine replacement for primary hypothyroidism is associated with poor health-related quality of life-a Brazilian multicentre study. Endocrine 44(2):434–440.  https://doi.org/10.1007/s12020-013-9886-1 Google Scholar
  69. 69.
    Lillevang-Johansen M, Abrahamsen B, Jørgensen HL, Brix TH, Hegedüs L (2018) Over- and under-treatment of hypothyroidism is associated with excess mortality: a register-based cohort study. Thyroid 28(5):566–574.  https://doi.org/10.1089/thy.2017.0517 Google Scholar
  70. 70.
    Thvilum M, Brandt F, Almind D, Christensen K, Brix TH, Hegedüs L (2013) Type and extent of somatic morbidity before and after the diagnosis of hypothyroidism. A nationwide register study. PLoS ONE 8(9):e75789.  https://doi.org/10.1371/journal.pone.0075789 Google Scholar
  71. 71.
    Feller M, Snel M, Moutzouri E, Bauer DC, de Montmollin M, Aujesky D, Ford I, Gussekloo J, Kearney PM, Mooijaart S, Quinn T, Stott D, Westendorp R, Rodondi N, Dekkers OM (2018) Association of thyroid hormone therapy with quality of life and thyroid-related symptoms in patients with subclinical hypothyroidism: a systematic review and meta-analysis. JAMA 320(13):1349–1359.  https://doi.org/10.1001/jama.2018.13770 Google Scholar
  72. 72.
    Klaver EI, van Loon HC, Stienstra R, Links TP, Keers JC, Kema IP, Kobold AC, van der Klauw MM, Wolffenbuttel BH (2013) Thyroid hormone status and health-related quality of life in the LifeLines Cohort Study. Thyroid 23(9):1066–1073.  https://doi.org/10.1089/thy.2013.0017 Google Scholar
  73. 73.
    Ovesen L, Andersen R, Jakobsen J (2003) Geographical differences in vitamin D status, with particular reference to European countries. Proc Nutr Soc 62(4):813–821Google Scholar
  74. 74.
    Johnson LK, Hofsø D, Aasheim ET, Tanbo T, Holven KB, Andersen LF, Røislien J, Hjelmesæth J (2012) Impact of gender on vitamin D deficiency in morbidly obese patients: a cross-sectional study. Eur J Clin Nutr 66(1):83–90.  https://doi.org/10.1038/ejcn.2011.140 Google Scholar
  75. 75.
    Poomthavorn P, Saowan S, Mahachoklertwattana P, Chailurkit L, Khlairit P (2012) Vitamin D status and glucose homeostasis in obese children and adolescents living in the tropics. Int J Obes (Lond) 36(4):491–495.  https://doi.org/10.1038/ijo.2011.260 Google Scholar
  76. 76.
    Saneei P, Salehi-Abargouei A, Esmaillzadeh A (2013) Serum 25-hydroxy vitamin D levels in relation to body mass index: a systematic review and meta-analysis. Obes Rev 14(5):393–404.  https://doi.org/10.1111/obr.12016 Google Scholar
  77. 77.
    Ahern T, Khattak A, O’Malley E, Dunlevy C, Kilbane M, Woods C, McKenna MJ, O’Shea D (2014) Association between vitamin D status and physical function in the severely obese. J Clin Endocrinol Metab 99(7):E1327–E1331.  https://doi.org/10.1210/jc.2014-1704 Google Scholar
  78. 78.
    Pourshahidi LK (2015) Vitamin D and obesity: current perspectives and future directions. Proc Nutr Soc 74(2):115–124.  https://doi.org/10.1017/S0029665114001578 Google Scholar
  79. 79.
    Knudsen N, Laurberg P, Rasmussen LB, Bülow I, Perrild H, Ovesen L, Jørgensen T (2005) Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population. J Clin Endocrinol Metab 90(7):4019–4024Google Scholar
  80. 80.
    Bhaskaran K, Dos-Santos-Silva I, Leon DA, Douglas IJ, Smeeth L (2018) Association of BMI with overall and cause-specific mortality: a population-based cohort study of 3·6 million adults in the UK. Lancet Diabetes Endocrinol 6(12):944–953.  https://doi.org/10.1016/S2213-8587(18)30288-2 Google Scholar
  81. 81.
    Wang S, Wu Y, Zuo Z, Zhao Y, Wang K (2018) The effect of vitamin D supplementation on thyroid autoantibody levels in the treatment of autoimmune thyroiditis: a systematic review and a meta-analysis. Endocrine 59(3):499–505.  https://doi.org/10.1007/s12020-018-1532-5 Google Scholar
  82. 82.
    Major JM, Graubard BI, Dodd KW, Iwan A, Alexander BH, Linet MS, Freedman DM (2013) Variability and reproducibility of circulating vitamin D in a nationwide U.S. population. J Clin Endocrinol Metab 98(1):97–104.  https://doi.org/10.1210/jc.2012-2643 Google Scholar
  83. 83.
    Gail MH, Wu J, Wang M, Yaun SS, Cook NR, Eliassen AH, McCullough ML, Yu K, Zeleniuch-Jacquotte A, Smith-Warner SA, Ziegler RG, Carroll RJ (2016) Calibration and seasonal adjustment for matched case-control studies of vitamin D and cancer. Stat Med 35(13):2133–2148.  https://doi.org/10.1002/sim.6856 Google Scholar
  84. 84.
    Jiang X, O’Reilly PF, Aschard H, Hsu YH, Richards JB, Dupuis J et al (2018) Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nat Commun 9(1):260.  https://doi.org/10.1038/s41467-017-02662-2 Google Scholar
  85. 85.
    Black LJ, Seamans KM, Cashman KD, Kiely M (2012) An updated systematic review and meta-analysis of the efficacy of vitamin D food fortification. J Nutr 142(6):1102–1108.  https://doi.org/10.3945/jn.112.158014 Google Scholar
  86. 86.
    Enko D, Fridrich L, Rezanka E, Stolba R, Ernst J, Wendler I, Fabian D, Hauptlorenz S, Halwachs-Baumann G (2014) 25-hydroxy-vitamin D status: limitations in comparison and clinical interpretation of serum-levels across different assay methods. Clin Lab 60(9):1541–1550Google Scholar
  87. 87.
    Lips P, Chapuy MC, Dawson-Hughes B, Pols HA, Holick MF (1999) An international comparison of serum 25-hydroxyvitamin D measurements. Osteoporos Int 9(5):394–397Google Scholar
  88. 88.
    Jones G (2015) Interpreting vitamin D assay results: proceed with caution. Clin J Am Soc Nephrol 10(2):331–334.  https://doi.org/10.2215/CJN.05490614 Google Scholar
  89. 89.
    Black LJ, Anderson D, Clarke MW, Ponsonby AL, Lucas RM, Autoimmune Investigator Group (2015) Analytical bias in the measurement of serum 25-hydroxyvitamin D concentrations impairs assessment of vitamin D status in clinical and research settings. PLoS ONE 10(8):e0135478.  https://doi.org/10.1371/journal.pone.0135478 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Nuclear Medicine and Oncology, Faculty of MedicineUniversity of OsijekOsijekCroatia
  2. 2.Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of MedicineUniversity of OsijekOsijekCroatia

Personalised recommendations