Advertisement

Diet quality index for Brazilian adolescents: the ERICA study

  • Débora Barbosa RoncaEmail author
  • Carina Andriatta Blume
  • Felipe Vogt Cureau
  • Suzi Alves Camey
  • Vanessa Bielefeldt Leotti
  • Michele Drehmer
  • Beatriz D. Schaan
  • Kênia Mara Baiocchi de Carvalho
Original Contribution
  • 49 Downloads

Abstract

Purpose

This study aimed to assess the dietary patterns of adolescents using a food-based diet quality index and their compliance with a healthy dietary guideline

Methods

Participants included 71,553 Brazilian adolescents (12–17 years old) from the Study of Cardiovascular Risks in Adolescents (ERICA), a cross-sectional school-based multicenter study.. Dietary intake was measured by one 24-h recall. A second recall was collected in a random subsample (~ 10%) to correct within-person variability. The Diet Quality Index for Adolescents adapted for Brazilians (DQIA-BR) was used to measure the overall quality of the dietary intake. The National Cancer Institute method was applied to estimate usual dietary intake. The DQIA-BR and the distribution of its components (quality, diversity, and equilibrium) were analyzed according to sex, geographical area, and type of school

Results

The mean (SD) DQIA-BR scores were 14.8% (6.1%) for females and 19.0% (6.3%) for males. All analyzed strata revealed low scores of DQIA-BR and its components. The median usual intake was five to sevenfold below the recommendations for vegetables and fruits and approximately twofold below the recommendations for dairy. The highest DQIA-BR mean scores were found in the northern region [17.0% (6.4%), females; 20.7% (6.3%), males]. Adolescents in both types of schools had relatively similar median intakes of snacks (~ 85 g) and sugared drinks (~ 600 ml)

Conclusions

The overall diet quality of Brazilian adolescents is inadequate based on evaluated parameters in all regions and socioeconomic backgrounds.

Keywords

Diet quality Dietary index Dietary patterns Nutrition assessment Adolescents 

Notes

Acknowledgements

This work was supported by the Brazilian Funding Authority for Studies and Projects (FINEP) (Grant number 01090421) and the Brazilian National Council of Technological and Scientific Development (CNPq) (Grant numbers 565037/2010-2, 405009/2012-7, 457050/2013-6), and DBR received the Spouse Education Fund (SEF) grant from the Community Committee for International Students of Stanford University Bechtel International Center (CA, USA) to participate in a Stata software course. FINEP, CNPq, and SEF had no role in the design, analysis or writing of this article. DBR would like to acknowledge the Spouse Education Fund (SEF) grant provided by the Community Committee for International Students of Stanford University (CA, USA). The authors gratefully acknowledge Inge Huybrechts from the HELENA study (Healthy Lifestyle in Europe by Nutrition in Adolescence) for her help in the calculation of the diet index and Eliseu Verly Júnior for being a consultant.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The present study was approved by the appropriate ethics committee, and all procedures performed were in accordance with the ethical standards of the 1964 Declaration of Helsinki and its later amendments.

References

  1. 1.
    World Health Organization (2011) Global status report on noncommunicable diseases 2010. World Health Organization, Geneva. https://apps.who.int/iris/bitstream/handle/10665/44579/9789240686458_eng.pdf;jsessionid=44A9657450CEB0457EAC84CE149CB243?sequence=1 Google Scholar
  2. 2.
    Swinburn BA, Sacks G, Hall KD et al (2011) The global obesity pandemic: shaped by global drivers and local environments. Lancet 378(9793):804–814CrossRefGoogle Scholar
  3. 3.
    Cespedes EM, Hu FB (2015) Dietary patterns: from nutritional epidemiologic analysis to national guidelines. Am J Clin Nutr 101(5):899–900CrossRefGoogle Scholar
  4. 4.
    Tucker K (2010) Dietary patterns, approaches, and multicultural perspective. Appl Physiol Nutr Metab 35(2):211CrossRefGoogle Scholar
  5. 5.
    Sotos-Prieto M, Bhupathiraju SN, Mattei J et al (2017) Association of changes in diet quality with total and cause-specific mortality. N Engl J Med 377(2):143–153CrossRefGoogle Scholar
  6. 6.
    Waijers PM, Feskens EJ, Ocké MC (2007) A critical review of predefined diet quality scores. Br J Nutr 97(2):219–231.  https://doi.org/10.1017/S0007114507250421 CrossRefGoogle Scholar
  7. 7.
    Mikkilä V, Räsänen L, Raitakari OT et al (2005) Consistent dietary patterns identified from childhood to adulthood: the cardiovascular risk in Young Finns Study. Br J Nutr 93(6):923–931CrossRefGoogle Scholar
  8. 8.
    World Health Organization (2016) Report of the commission on ending childhood obesity. GenevaGoogle Scholar
  9. 9.
    Gates M (2016) Advancing the adolescent health agenda. Lancet 387(10036):2358CrossRefGoogle Scholar
  10. 10.
    Dick B, Ferguson BJ (2015) Health for the world’s adolescents: a second chance in the second decade. J Adolesc Health 56(1):3–6CrossRefGoogle Scholar
  11. 11.
    World Health Organization (2005) Nutrition in Adolescence: issues for the health sector: issues in adolescent health and development. GenevaGoogle Scholar
  12. 12.
    Marshall S, Burrows T, Collins CE (2014) Systematic review of diet quality indices and their associations with health-related outcomes in children and adolescents. J Hum Nutr Diet 27(6):577–598.  https://doi.org/10.1111/jhn.12208 CrossRefGoogle Scholar
  13. 13.
    Lazarou C, Newby PK (2011) Use of dietary indexes among children in developed countries. Adv Nutr 2(4):295–303.  https://doi.org/10.3945/an.110.000166 CrossRefGoogle Scholar
  14. 14.
    Collins C, Watson J, Burrows T (2010) Measuring dietary intake in children and adolescents in the context of overweight and obesity. Int J Obes 34(7):1103CrossRefGoogle Scholar
  15. 15.
    Conde WL, Monteiro CA (2014) Nutrition transition and double burden of undernutrition and excess of weight in Brazil. Am J Clin Nutr 100(6):1617S–1622SCrossRefGoogle Scholar
  16. 16.
    Veiga GV, Araújo MC et al (2013) Inadequate nutrient intake in Brazilian adolescents. Revista de Saúde Pública 47:212 s–221 sCrossRefGoogle Scholar
  17. 17.
    Souza AeM, Barufaldi LA, Abreu GeA et al (2016) ERICA: intake of macro and micronutrients of Brazilian adolescents. Rev Saude Publica.  https://doi.org/10.1590/S01518-8787.2016050006698 Google Scholar
  18. 18.
    Bloch KV, Szklo M, Kuschnir MC et al (2015) The Study of cardiovascular risk in adolescents–ERICA: rationale, design and sample characteristics of a national survey examining cardiovascular risk factor profile in Brazilian adolescents. BMC Public Health 15:94.  https://doi.org/10.1186/s12889-015-1442-x CrossRefGoogle Scholar
  19. 19.
    Habicht J (1974) Standardization of quantitative epidemiological methods in the field. Boletin de La Oficina Sanitaria Panamericana Pan American Sanitary Bureau 76(5):375Google Scholar
  20. 20.
    Vasconcellos MT, Silva PL, Szklo M et al (2015) Sampling design for the study of cardiovascular risks in adolescents (ERICA). Cad Saude Publica 31(5):921–930.  https://doi.org/10.1590/0102-311X00043214 CrossRefGoogle Scholar
  21. 21.
    Lohman T, Roche A, Martorell R (1991) Anthropometric standardization reference manual. Human Kinetics Books, Champaign, IllinoisGoogle Scholar
  22. 22.
    Onis M, Onyango AW, Borghi E et al (2007) Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 85(9):660–667CrossRefGoogle Scholar
  23. 23.
    Barufaldi LA, Abreu GdA, Veiga, GVd et al (2016) Software to record 24-hour food recall: application in the study of cardiovascular risks in adolescents. Revista Brasileira de Epidemiologia 19(2):464–468CrossRefGoogle Scholar
  24. 24.
    Conway JM, Ingwersen LA, Vinyard BT et al (2003) Effectiveness of the US Department of Agriculture 5-step multiple-pass method in assessing food intake in obese and nonobese women. Am J Clin Nutr 77(5):1171–1178CrossRefGoogle Scholar
  25. 25.
    Tooze JA, Midthune D, Dodd KW et al (2006) A new statistical method for estimating the usual intake of episodically consumed foods with application to their distribution. J Am Diet Assoc 106(10):1575–1587CrossRefGoogle Scholar
  26. 26.
    Freedman LS, Guenther PM, Dodd KW et al (2010) The population distribution of ratios of usual intakes of dietary components that are consumed every day can be estimated from repeated 24-hour recalls. J Nutr 140(1):111–116.  https://doi.org/10.3945/jn.109.110254 CrossRefGoogle Scholar
  27. 27.
    Souza AdM, Pereira RA, Yokoo EM et al (2013) Most consumed foods in Brazil: National Dietary Survey 2008–2009. Revista de Saúde Pública 47(Suppl. 1):190s–199s.  https://doi.org/10.1590/S0034-89102013000700005 CrossRefGoogle Scholar
  28. 28.
    Instituto Brasileiro de Geografia e Estatística (2011) Pesquisa de Orçamentos Familiares (POF), 2008–2009: tabela de medidas referidas para os alimentos consumidos no Brasil. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro. http://biblioteca.ibge.gov.br/visualizacao/livros/liv50002.pdf Google Scholar
  29. 29.
    Instituto Brasileiro de Geografia e Estatística (2011) Pesquisa de Orçamentos Familiares (POF), 2008–2009: tabela de medidas referidas para os alimentos consumidos no Brasil. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro. https://biblioteca.ibge.gov.br/visualizacao/livros/liv50000.pdf Google Scholar
  30. 30.
    Silva TL, Klein CH, Souza AeM et al (2016) Response rate in the study of cardiovascular risks in adolescents—ERICA. Rev Saude Publica 50 Suppl 1.  https://doi.org/10.1590/S01518-8787.2016050006730
  31. 31.
    Vyncke K, Cruz Fernandez E, Fajó-Pascual M et al (2013) Validation of the diet quality index for adolescents by comparison with biomarkers, nutrient and food intakes: the HELENA study. Br J Nutr 109(11):2067–2078.  https://doi.org/10.1017/S000711451200414X CrossRefGoogle Scholar
  32. 32.
    Vlaams Instituut voor Gezondheidspromotie (VIG) (2006) De actieve voedingsdriehoek: een praktische voedings- en beweeggids (The active food pyramid: a practical guide to diet and physical activity). Vlaams Instituut voor Gezondheidspromotie, (VIG), Brussels. http://www.vig.be Google Scholar
  33. 33.
    World Health Organization (2000) CINDI dietary guide. World Health Organization, Geneva. http://www.euro.who.int/document/e70041.pdf Google Scholar
  34. 34.
    Joint FAO/WHO, Consultation (1996) Preparation and Use of Food-based Dietary Guidelines. WHO Technical Report Series 880. Report of a joint FAO/WHO consultation. NicosiaGoogle Scholar
  35. 35.
    Ministério da Saúde (2006) Guia Alimentar para a população brasileira: promovendo a alimentação saudável. Secretaria de Atenção à Saúde, BrasíliaGoogle Scholar
  36. 36.
    Kipnis V, Midthune D, Buckman DW et al (2009) Modeling data with excess zeros and measurement error: application to evaluating relationships between episodically consumed foods and health outcomes. Biometrics 65(4):1003–1010CrossRefGoogle Scholar
  37. 37.
    de Andrade SC, de Azevedo Barros MB, Carandina L et al (2010) Dietary quality index and associated factors among adolescents of the state of Sao Paulo, Brazil. J Pediatr 156(3):456–460.  https://doi.org/10.1016/j.jpeds.2009.09.066 CrossRefGoogle Scholar
  38. 38.
    Godoy FdC, SCd A, Morimoto JM et al (2006) Índice de qualidade da dieta de adolescentes residentes no distrito do Butantã, município de São Paulo, Brasil. Revista de Nutrição 19:663–671CrossRefGoogle Scholar
  39. 39.
    de Assumpção D, Barros MB, Fisberg RM et al (2012) Diet quality among adolescents: a population-based study in Campinas, Brazil. Rev Bras Epidemiol 15(3):605–616CrossRefGoogle Scholar
  40. 40.
    de Andrade SC, Previdelli ÁN, Cesar CLG et al (2016) Trends in diet quality among adolescents, adults and older adults: a population-based study. Prev Med Rep 4:391–396CrossRefGoogle Scholar
  41. 41.
    Monteiro LS, Rodrigues PRM, Veiga, GVd et al (2016) Diet quality among adolescents has deteriorated: a panel study in Niterói, Rio de Janeiro State, Brazil, 2003–2008. Cadernos de Saude Publica 32 (12):e00124715Google Scholar
  42. 42.
    Goodwin DK, Knol LK, Eddy JM et al (2006) Sociodemographic correlates of overall quality of dietary intake of US adolescents. Nutr Res 26(3):105–110CrossRefGoogle Scholar
  43. 43.
    Tek N, Yildiran H, Akbulut G et al (2011) Evaluation of dietary quality of adolescents using healthy eating index. Nutr Res Pract 5(4):322–328.  https://doi.org/10.4162/nrp.2011.5.4.322 CrossRefGoogle Scholar
  44. 44.
    Golley RK, Hendrie GA, McNaughton SA (2011) Scores on the dietary guideline index for children and adolescents are associated with nutrient intake and socio-economic position but not adiposity. J Nutr 141(7):1340–1347CrossRefGoogle Scholar
  45. 45.
    Claro RM, Santos MAS, Oliveira-Campos M (2014) Body image and extreme attitudes toward weight in Brazilian schoolchildren (PeNSE 2012). Revista Brasileira de Epidemiologia 17:146–157CrossRefGoogle Scholar
  46. 46.
    Alvarenga MdS, Lourenço BH, Philippi ST et al (2013) Disordered eating among Brazilian female college students. Cadernos de saude publica 29(5):879–888CrossRefGoogle Scholar
  47. 47.
    Kuschnir MC, Bloch KV, Szklo M et al (2016) ERICA: prevalence of metabolic syndrome in Brazilian adolescents. Rev Saude Publica.  https://doi.org/10.1590/S01518-8787.2016050006701 Google Scholar
  48. 48.
    Bloch KV, Klein CH, Szklo M et al (2016) ERICA: prevalences of hypertension and obesity in Brazilian adolescents. Rev Saude Publica.  https://doi.org/10.1590/S01518-8787.2016050006685 Google Scholar
  49. 49.
    Diethelm K, Jankovic N, Moreno LA et al (2012) Food intake of European adolescents in the light of different food-based dietary guidelines: results of the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr 15(3):386–398.  https://doi.org/10.1017/S1368980011001935 CrossRefGoogle Scholar
  50. 50.
    Kalkwarf HJ, Khoury JC, Lanphear BP (2003) Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. Am J Clin Nutr 77(1):257–265CrossRefGoogle Scholar
  51. 51.
    Greer FR, Krebs NF (2006) Optimizing bone health and calcium intakes of infants, children, and adolescents. Pediatrics 117(2):578–585CrossRefGoogle Scholar
  52. 52.
    Guo J, Astrup A, Lovegrove JA et al (2017) Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: dose–response meta-analysis of prospective cohort studies. Eur J Epidemiol 32:269–287 (Springer) CrossRefGoogle Scholar
  53. 53.
    Thorning TK, Bertram HC, Bonjour J-P et al (2017) Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge gaps. Am J Clin Nutr 105(5):1033–1045CrossRefGoogle Scholar
  54. 54.
    Drehmer M, Pereira MA, Schmidt MI et al (2016) Total and full-fat, but not low-fat, dairy product intakes are inversely associated with metabolic syndrome in adults. J Nutr 146(1):81–89CrossRefGoogle Scholar
  55. 55.
    Fernández-Ortega M (2008) Consumo de fuentes de calcio en adolescentes mujeres en Panamá. Archivos Latinoamericanos de Nutrición 58(3):286Google Scholar
  56. 56.
    Malik VS, Popkin BM, Bray GA et al (2010) Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care 33(11):2477–2483.  https://doi.org/10.2337/dc10-1079 CrossRefGoogle Scholar
  57. 57.
    World Health Organization (2015) Guideline: sugars intake for adults and children. World Health Organization, Geneva. https://apps.who.int/iris/bitstream/handle/10665/149782/9789241549028_eng.pdf?sequence=1 Google Scholar
  58. 58.
    Malta DC, Andreazzi MAR, Oliveira-Campos M et al (2014) Trend of the risk and protective factors of chronic diseases in adolescents, National Adolescent School-based Health Survey (PeNSE 2009 e 2012). Revista Brasileira de Epidemiologia 17:77–91CrossRefGoogle Scholar
  59. 59.
    Béghin L, Dauchet L, De Vriendt T et al (2014) Influence of parental socio-economic status on diet quality of European adolescents: results from the HELENA study. Br J Nutr 111(7):1303–1312.  https://doi.org/10.1017/S0007114513003796 CrossRefGoogle Scholar
  60. 60.
    Oliveira JS, Barufaldi LA, Abreu GeA et al (2016) ERICA: use of screens and consumption of meals and snacks by Brazilian adolescents. Rev Saude Publica 50 Suppl 1.  https://doi.org/10.1590/S01518-8787.2016050006680
  61. 61.
    Batis C, Aburto TC, Sánchez-Pimienta TG et al (2016) Adherence to dietary recommendations for food group intakes is low in the Mexican population. J Nutr 146(9):1897S–1906SCrossRefGoogle Scholar
  62. 62.
    Wang YC, Bleich SN, Gortmaker SL (2008) Increasing caloric contribution from sugar-sweetened beverages and 100% fruit juices among US children and adolescents, 1988–2004. Pediatrics 121(6):e1604–e1614CrossRefGoogle Scholar
  63. 63.
    Levy-Costa RB, Sichieri R, Pontes NdS et al (2005) Household food availability in Brazil: distribution and trends (1974–2003). Revista de Saude publica 39(4):530–540CrossRefGoogle Scholar
  64. 64.
    Jaime PC, Stopa SR, Oliveira TP et al (2015) Prevalence and sociodemographic distribution of healthy eating markers, National Health Survey, Brazil 2013. Epidemiologia e Serviços de Saúde 24 (2):267–276CrossRefGoogle Scholar
  65. 65.
    Ruel MT (2003) Operationalizing dietary diversity: a review of measurement issues and research priorities. J Nutr 133(11):3911S–3926SCrossRefGoogle Scholar
  66. 66.
    Forrestal SG (2011) Energy intake misreporting among children and adolescents: a literature review. Matern Child Nutr 7(2):112–127CrossRefGoogle Scholar
  67. 67.
    Livingstone MBE, Robson P, Wallace J (2004) Issues in dietary intake assessment of children and adolescents. Br J Nutr 92(S2):S213–S222CrossRefGoogle Scholar
  68. 68.
    Tooze JA, Kipnis V, Buckman DW et al (2010) A mixed-effects model approach for estimating the distribution of usual intake of nutrients: The NCI method. Stat Med 29(27):2857–2868CrossRefGoogle Scholar
  69. 69.
    Willett W (2013) Nutritional Epidemiology: Monographs in epidemiology and biostatistics, vol 40, 3rd ednGoogle Scholar
  70. 70.
    Dodd KW, Guenther PM, Freedman LS et al (2006) Statistical methods for estimating usual intake of nutrients and foods: a review of the theory. J Am Diet Assoc 106(10):1640–1650.  https://doi.org/10.1016/j.jada.2006.07.011 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Débora Barbosa Ronca
    • 1
    Email author
  • Carina Andriatta Blume
    • 2
  • Felipe Vogt Cureau
    • 2
  • Suzi Alves Camey
    • 3
  • Vanessa Bielefeldt Leotti
    • 3
  • Michele Drehmer
    • 4
  • Beatriz D. Schaan
    • 2
  • Kênia Mara Baiocchi de Carvalho
    • 1
  1. 1.Graduate Program in Human NutritionUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Postgraduate Program in Medical Sciences: EndocrinologyUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Postgraduate Program in Epidemiology, Department of StatisticsUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  4. 4.Postgraduate Program in Epidemiology, Department of Nutrition and Food and Nutrition Research CenterUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations