Advertisement

Supplementation with dairy matrices impacts on homocysteine levels and gut microbiota composition of hyperhomocysteinemic mice

  • Paola Zinno
  • Vincenzo Motta
  • Barbara Guantario
  • Fausta Natella
  • Marianna Roselli
  • Cristiano Bello
  • Raffaella Comitato
  • Domenico Carminati
  • Flavio Tidona
  • Aurora Meucci
  • Paola Aiello
  • Giuditta Perozzi
  • Fabio Virgili
  • Paolo Trevisi
  • Raffaella CanaliEmail author
  • Chiara DevirgiliisEmail author
Original Contribution

Abstract

Purpose

Several studies highlighted a correlation between folic acid deficiency and high plasma homocysteine concentration, considered a risk factor for multifactorial diseases. Natural folates represent an emerging alternative strategy to supplementation with synthetic folic acid, whose effects are controversial. The present work was, therefore, performed in hyperhomocysteinemic mice to study the impact of supplementation with dairy matrices containing natural folates on plasma homocysteine levels and faecal microbiota composition.

Methods

Forty mice were divided into six groups, two of which fed control or folic acid deficient (FD) diets for 10 weeks. The remaining four groups were fed FD diet for the first 5 weeks and then shifted to a standard control diet containing synthetic folic acid (R) or a FD diet supplemented with folate-enriched fermented milk (FFM) produced by selected lactic acid bacteria, fermented milk (FM), or milk (M), for additional 5 weeks.

Results

Supplementation with dairy matrices restored homocysteine levels in FD mice, although impacting differently on hepatic S-adenosyl-methionine levels. In particular, FFM restored both homocysteine and S-adenosyl-methionine levels to the control conditions, in comparison with FM and M. Next generation sequencing analysis revealed that faecal microbiota of mice supplemented with FFM, FM and M were characterised by a higher richness of bacterial species in comparison with C, FD and R groups. Analysis of beta diversity highlighted that the three dairy matrices determined specific, significant variations of faecal microbiota composition, while hyperhomocysteinemia was not associated with significant changes.

Conclusions

Overall, the results represent a promising starting point for the applicability of food matrices enriched in natural folates to manage hyperhomocysteinemia.

Keywords

Fermented food Folate Homocysteine Microbiome 

Notes

Acknowledgements

The Authors wish to thank Kariklia Pascucci for her kind support in daily lab work, Altero Aguzzi for his help in fermented milk liophylisation and Rita Rami for the excellent care of the animals. This work was funded by the Italian Ministry of Agriculture, Food & Forestry Policies (MiPAAF), with Grant “MEDITO” (DM 12487/7303/11) and with national support to the JPI-HDHL “ENPADASI” project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Consent for publication

All authors read and approved the final manuscript.

Supplementary material

394_2019_1911_MOESM1_ESM.docx (79 kb)
Supplementary material 1 (DOCX 79 KB)
394_2019_1911_MOESM2_ESM.docx (53 kb)
Supplementary material 2 (DOCX 52 KB)
394_2019_1911_MOESM3_ESM.tif (12.9 mb)
Supplementary material 3 Fig. S1. Per sample rarefaction curves. Each curve shows the average number of Operational Taxonomic Units (OTUs) as a function of the reads abundance subsampled at different depths. Each frame and color represent the experimental treatments, the vertical gray line indicates the lowest number of reads obtained on overall samples (n = 76187) (TIF 13183 KB)
394_2019_1911_MOESM4_ESM.xlsx (16 kb)
Supplementary material 4 (XLSX 15 KB)

References

  1. 1.
    Strain JJ, Dowey L, Ward M, Pentieva K, McNulty H (2004) B-vitamins, homocysteine metabolism and CVD. Proc Nutr Soc 63(4):597–603.  https://doi.org/10.1079/PNS2004390 CrossRefGoogle Scholar
  2. 2.
    Bellamy MF, McDowell IF, Ramsey MW, Brownlee M, Bones C, Newcombe RG, Lewis MJ (1998) Hyperhomocysteinemia after an oral methionine load acutely impairs endothelial function in healthy adults. Circulation 98(18):1848–1852CrossRefGoogle Scholar
  3. 3.
    Appel LJ, Miller ER 3rd, Jee SH, Stolzenberg-Solomon R, Lin PH, Erlinger T, Nadeau MR, Selhub J (2000) Effect of dietary patterns on serum homocysteine: results of a randomized, controlled feeding study. Circulation 102(8):852–857CrossRefGoogle Scholar
  4. 4.
    Bissoli L, Di Francesco V, Ballarin A, Mandragona R, Trespidi R, Brocco G, Caruso B, Bosello O, Zamboni M (2002) Effect of vegetarian diet on homocysteine levels. Ann Nutr Metab 46(2):73–79.  https://doi.org/10.1159/000057644 CrossRefGoogle Scholar
  5. 5.
    Mann NJ, Li D, Sinclair AJ, Dudman NP, Guo XW, Elsworth GR, Wilson AK, Kelly FD (1999) The effect of diet on plasma homocysteine concentrations in healthy male subjects. Eur J Clin Nutr 53(11):895–899CrossRefGoogle Scholar
  6. 6.
    Jamwal S, Sharma S (2018) Vascular endothelium dysfunction: a conservative target in metabolic disorders. Inflamm Res.  https://doi.org/10.1007/s00011-018-1129-8 Google Scholar
  7. 7.
    Li Y, Huang T, Zheng Y, Muka T, Troup J, Hu FB (2016) Folic acid supplementation and the risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. J Am Heart Assoc 5(8):e003768.  https://doi.org/10.1161/JAHA.116.003768 CrossRefGoogle Scholar
  8. 8.
    Huang X, Li Y, Li P, Li J, Bao H, Zhang Y, Wang B, Sun N, Wang J, He M, Yin D, Tang G, Chen Y, Cui Y, Huang Y, Hou FF, Qin X, Huo Y, Cheng X (2017) Association between percent decline in serum total homocysteine and risk of first stroke. Neurology 89(20):2101–2107.  https://doi.org/10.1212/WNL.0000000000004648 CrossRefGoogle Scholar
  9. 9.
    Marti-Carvajal AJ, Sola I, Lathyris D, Dayer M (2017) Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev 8:CD006612.  https://doi.org/10.1002/14651858.CD006612.pub5 Google Scholar
  10. 10.
    Zhang DM, Ye JX, Mu JS, Cui XP (2017) Efficacy of vitamin B supplementation on cognition in elderly patients with cognitive-related diseases. J Geriatr Psychiatry Neurol 30(1):50–59.  https://doi.org/10.1177/0891988716673466 CrossRefGoogle Scholar
  11. 11.
    Zhou Z, Liang Y, Qu H, Zhao M, Guo F, Zhao C, Teng W (2018) Plasma homocysteine concentrations and risk of intracerebral hemorrhage: a systematic review and meta-analysis. Sci Rep 8(1):2568.  https://doi.org/10.1038/s41598-018-21019-3 CrossRefGoogle Scholar
  12. 12.
    Konings EJ, Roomans HH, Dorant E, Goldbohm RA, Saris WH, van den Brandt PA (2001) Folate intake of the Dutch population according to newly established liquid chromatography data for foods. Am J Clin Nutr 73(4):765–776CrossRefGoogle Scholar
  13. 13.
    Smith AD, Kim YI, Refsum H (2008) Is folic acid good for everyone? Am J Clin Nutr 87(3):517–533.  https://doi.org/10.1093/ajcn/87.3.517 CrossRefGoogle Scholar
  14. 14.
    Bailey SW, Ayling JE (2009) The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc Natl Acad Sci USA 106(36):15424–15429.  https://doi.org/10.1073/pnas.0902072106 CrossRefGoogle Scholar
  15. 15.
    Troen AM, Mitchell B, Sorensen B, Wener MH, Johnston A, Wood B, Selhub J, McTiernan A, Yasui Y, Oral E, Potter JD, Ulrich CM (2006) Unmetabolized folic acid in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal women. J Nutr 136(1):189–194.  https://doi.org/10.1093/jn/136.1.189 CrossRefGoogle Scholar
  16. 16.
    Sawaengsri H, Wang J, Reginaldo C, Steluti J, Wu D, Meydani SN, Selhub J, Paul L (2016) High folic acid intake reduces natural killer cell cytotoxicity in aged mice. J Nutr Biochem 30:102–107.  https://doi.org/10.1016/j.jnutbio.2015.12.006 CrossRefGoogle Scholar
  17. 17.
    Melnyk S, Pogribna M, Miller BJ, Basnakian AG, Pogribny IP, James SJ (1999) Uracil misincorporation, DNA strand breaks, and gene amplification are associated with tumorigenic cell transformation in folate deficient/repleted Chinese hamster ovary cells. Cancer Lett 146(1):35–44.  https://doi.org/10.1016/S0304-3835(99)00213-X CrossRefGoogle Scholar
  18. 18.
    Mason JB, Dickstein A, Jacques PF, Haggarty P, Selhub J, Dallal G, Rosenberg IH (2007) A temporal association between folic acid fortification and an increase in colorectal cancer rates may be illuminating important biological principles: a hypothesis. Cancer Epidemiol Biomark Prev 16(7):1325–1329.  https://doi.org/10.1158/1055-9965.EPI-07-0329 CrossRefGoogle Scholar
  19. 19.
    Hirsch S, Sanchez H, Albala C, de la Maza MP, Barrera G, Leiva L, Bunout D (2009) Colon cancer in Chile before and after the start of the flour fortification program with folic acid. Eur J Gastroenterol Hepatol 21(4):436–439.  https://doi.org/10.1097/MEG.0b013e328306ccdb CrossRefGoogle Scholar
  20. 20.
    Baggott JE, Oster RA, Tamura T (2012) Meta-analysis of cancer risk in folic acid supplementation trials. Cancer Epidemiol 36(1):78–81.  https://doi.org/10.1016/j.canep.2011.05.003 CrossRefGoogle Scholar
  21. 21.
    Christensen KE, Mikael LG, Leung KY, Levesque N, Deng L, Wu Q, Malysheva OV, Best A, Caudill MA, Greene ND, Rozen R (2015) High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice. Am J Clin Nutr 101(3):646–658.  https://doi.org/10.3945/ajcn.114.086603 CrossRefGoogle Scholar
  22. 22.
    Asrar FM, O’Connor DL (2005) Bacterially synthesized folate and supplemental folic acid are absorbed across the large intestine of piglets. J Nutr Biochem 16(10):587–593.  https://doi.org/10.1016/j.jnutbio.2005.02.006 CrossRefGoogle Scholar
  23. 23.
    LeBlanc JG, Laino JE, del Valle MJ, Vannini V, van Sinderen D, Taranto MP, de Valdez GF, de Giori GS, Sesma F (2011) B-group vitamin production by lactic acid bacteria—current knowledge and potential applications. J Appl Microbiol 111(6):1297–1309.  https://doi.org/10.1111/j.1365-2672.2011.05157.x CrossRefGoogle Scholar
  24. 24.
    Saubade F, Hemery YM, Guyot JP, Humblot C (2017) Lactic acid fermentation as a tool for increasing the folate content of foods. Crit Rev Food Sci Nutr 57(18):3894–3910.  https://doi.org/10.1080/10408398.2016.1192986 CrossRefGoogle Scholar
  25. 25.
    Pompei A, Cordisco L, Amaretti A, Zanoni S, Raimondi S, Matteuzzi D, Rossi M (2007) Administration of folate-producing bifidobacteria enhances folate status in Wistar rats. J Nutr 137(12):2742–2746.  https://doi.org/10.1093/jn/137.12.2742 CrossRefGoogle Scholar
  26. 26.
    LeBlanc JG, Sybesma W, Starrenburg M, Sesma F, de Vos WM, de Giori GS, Hugenholtz J (2010) Supplementation with engineered Lactococcus lactis improves the folate status in deficient rats. Nutrition 26(7–8):835–841.  https://doi.org/10.1016/j.nut.2009.06.023 CrossRefGoogle Scholar
  27. 27.
    Iyer R, Tomar SK (2011) Dietary effect of folate-rich fermented milk produced by Streptococcus thermophilus strains on hemoglobin level. Nutrition 27(10):994–997.  https://doi.org/10.1016/j.nut.2011.01.003 CrossRefGoogle Scholar
  28. 28.
    D’Aimmo MR, Mattarelli P, Biavati B, Carlsson NG, Andlid T (2012) The potential of bifidobacteria as a source of natural folate. J Appl Microbiol 112(5):975–984.  https://doi.org/10.1111/j.1365-2672.2012.05261.x CrossRefGoogle Scholar
  29. 29.
    Laino JE, dV HZMJ, de Giori S, Leblanc G JG (2015) Milk fermented with selected strains of lactic acid bacteria is able to improve folate status of deficient rodents and also prevent folate deficiency. J Funct Foods 17:22–32CrossRefGoogle Scholar
  30. 30.
    LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24(2):160–168.  https://doi.org/10.1016/j.copbio.2012.08.005 CrossRefGoogle Scholar
  31. 31.
    Tidona F, Meucci A, Povolo M, Pelizzola V, Zago M, Contarini G, Carminati D, Giraffa G (2018) Applicability of Lactococcus hircilactis and Lactococcus laudensis as dairy cultures. Int J Food Microbiol 271:1–7.  https://doi.org/10.1016/j.ijfoodmicro.2018.02.015 CrossRefGoogle Scholar
  32. 32.
    Meucci A, Rossetti L, Zago M, Monti L, Giraffa G, Carminati D, Tidona F (2018) Folates biosynthesis by Streptococcus thermophilus during growth in milk. Food Microbiol 69:116–122.  https://doi.org/10.1016/j.fm.2017.08.001 CrossRefGoogle Scholar
  33. 33.
    Reeves PG (1997) Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 127(5 Suppl):838S–841SCrossRefGoogle Scholar
  34. 34.
    Tuschl K, Bodamer OA, Erwa W, Muhl A (2005) Rapid analysis of total plasma homocysteine by tandem mass spectrometry. Clin Chim Acta 351(1–2):139–141.  https://doi.org/10.1016/j.cccn.2004.08.016 CrossRefGoogle Scholar
  35. 35.
    Struys EA, Jansen EE, de Meer K, Jakobs C (2000) Determination of S-adenosylmethionine and S-adenosylhomocysteine in plasma and cerebrospinal fluid by stable-isotope dilution tandem mass spectrometry. Clin Chem 46(10):1650–1656Google Scholar
  36. 36.
    Krijt J, Duta A, Kozich V (2009) Determination of S-adenosylmethionine and S-adenosylhomocysteine by LC-MS/MS and evaluation of their stability in mice tissues. J Chromatogr B Analyt Technol Biomed Life Sci 877(22):2061–2066.  https://doi.org/10.1016/j.jchromb.2009.05.039 CrossRefGoogle Scholar
  37. 37.
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1.  https://doi.org/10.1093/nar/gks808 CrossRefGoogle Scholar
  38. 38.
    Sacchi CT, Whitney AM, Mayer LW, Morey R, Steigerwalt A, Boras A, Weyant RS, Popovic T (2002) Sequencing of 16S rRNA gene: a rapid tool for identification of Bacillus anthracis. Emerg Infect Dis 8(10):1117–1123.  https://doi.org/10.3201/eid0810.020391 CrossRefGoogle Scholar
  39. 39.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336.  https://doi.org/10.1038/nmeth.f.303 CrossRefGoogle Scholar
  40. 40.
    Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10(1):57–59.  https://doi.org/10.1038/nmeth.2276 CrossRefGoogle Scholar
  41. 41.
    McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4):e61217.  https://doi.org/10.1371/journal.pone.0061217 CrossRefGoogle Scholar
  42. 42.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Community Ecology Package, Vegan. R Package Version 2.0-9. https://CRAN.R-project.org/package=vegan
  43. 43.
    Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46.  https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x Google Scholar
  44. 44.
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60.  https://doi.org/10.1186/gb-2011-12-6-r60 CrossRefGoogle Scholar
  45. 45.
    Zakrzewski M, Proietti C, Ellis JJ, Hasan S, Brion MJ, Berger B, Krause L (2017) Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions. Bioinformatics 33(5):782–783.  https://doi.org/10.1093/bioinformatics/btw725 Google Scholar
  46. 46.
    Velez-Carrasco W, Merkel M, Twiss CO, Smith JD (2008) Dietary methionine effects on plasma homocysteine and HDL metabolism in mice. J Nutr Biochem 19(6):362–370.  https://doi.org/10.1016/j.jnutbio.2007.05.005 CrossRefGoogle Scholar
  47. 47.
    Obeid R (2013) The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway. Nutrients 5(9):3481–3495.  https://doi.org/10.3390/nu5093481 CrossRefGoogle Scholar
  48. 48.
    Jones ML, Nixon PF (2002) Tetrahydrofolates are greatly stabilized by binding to bovine milk folate-binding protein. J Nutr 132(9):2690–2694.  https://doi.org/10.1093/jn/132.9.2690 CrossRefGoogle Scholar
  49. 49.
    Laino JE, dV MJ, de Giori S, Leblanc G JG (2013) Development of a high folate concentration yogurt naturally bio-enriched using selected lactic acid bacteria. LWT Food Sci Technol 54:1–5CrossRefGoogle Scholar
  50. 50.
    Forssen KM, Jagerstad MI, Wigertz K, Witthoft CM (2000) Folates and dairy products: a critical update. J Am Coll Nutr 19(2 Suppl):100S–110SCrossRefGoogle Scholar
  51. 51.
    Eitenmiller RR, Landen WO (1999) Folate. In: Eitenmiller RR, Landen WO (ed) Vitamin analysis for the health and food sciences. CRC Press, Boca Raton, pp 411–466Google Scholar
  52. 52.
    Said HM, Chatterjee N, Haq RU, Subramanian VS, Ortiz A, Matherly LH, Sirotnak FM, Halsted C, Rubin SA (2000) Adaptive regulation of intestinal folate uptake: effect of dietary folate deficiency. Am J Physiol Cell Physiol 279(6):C1889–C1895.  https://doi.org/10.1152/ajpcell.2000.279.6.C1889 CrossRefGoogle Scholar
  53. 53.
    Rossi M, Amaretti A, Raimondi S (2011) Folate production by probiotic bacteria. Nutrients 3(1):118–134.  https://doi.org/10.3390/nu3010118 CrossRefGoogle Scholar
  54. 54.
    Ghoshal K, Li X, Datta J, Bai S, Pogribny I, Pogribny M, Huang Y, Young D, Jacob ST (2006) A folate- and methyl-deficient diet alters the expression of DNA methyltransferases and methyl CpG binding proteins involved in epigenetic gene silencing in livers of F344 rats. J Nutr 136(6):1522–1527.  https://doi.org/10.1093/jn/136.6.1522 CrossRefGoogle Scholar
  55. 55.
    Miller JW, Nadeau MR, Smith D, Selhub J (1994) Vitamin B-6 deficiency vs folate deficiency: comparison of responses to methionine loading in rats. Am J Clin Nutr 59(5):1033–1039.  https://doi.org/10.1093/ajcn/59.5.1033 CrossRefGoogle Scholar
  56. 56.
    Janosik M, Kery V, Gaustadnes M, Maclean KN, Kraus JP (2001) Regulation of human cystathionine beta-synthase by S-adenosyl-l-methionine: evidence for two catalytically active conformations involving an autoinhibitory domain in the C-terminal region. Biochemistry 40(35):10625–10633.  https://doi.org/10.1021/bi010711p CrossRefGoogle Scholar
  57. 57.
    Ereno-Orbea J, Majtan T, Oyenarte I, Kraus JP, Martinez-Cruz LA (2014) Structural insight into the molecular mechanism of allosteric activation of human cystathionine beta-synthase by S-adenosylmethionine. Proc Natl Acad Sci USA 111(37):E3845–E3852.  https://doi.org/10.1073/pnas.1414545111 CrossRefGoogle Scholar
  58. 58.
    Zhao R, Diop-Bove N, Visentin M, Goldman ID (2011) Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev Nutr 31:177–201.  https://doi.org/10.1146/annurev-nutr-072610-145133 CrossRefGoogle Scholar
  59. 59.
    Mosca A, Leclerc M, Hugot JP (2016) Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem? Front Microbiol 7:455.  https://doi.org/10.3389/fmicb.2016.00455 CrossRefGoogle Scholar
  60. 60.
    Vaughan EE, de Vries MC, Zoetendal EG, Ben-Amor K, Akkermans AD, de Vos WM (2002) The intestinal LABs. Antonie Van Leeuwenhoek 82(1–4):341–352CrossRefGoogle Scholar
  61. 61.
    Strozzi GP, Mogna L (2008) Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains. J Clin Gastroenterol 42(Suppl 3 Pt 2):S179–S184.  https://doi.org/10.1097/MCG.0b013e31818087d8 CrossRefGoogle Scholar
  62. 62.
    Ebel B, Lemetais G, Beney L, Cachon R, Sokol H, Langella P, Gervais P (2014) Impact of probiotics on risk factors for cardiovascular diseases. A review. Crit Rev Food Sci Nutr 54(2):175–189.  https://doi.org/10.1080/10408398.2011.579361 CrossRefGoogle Scholar
  63. 63.
    Fabian E, Majchrzak D, Dieminger B, Meyer E, Elmadfa I (2008) Influence of probiotic and conventional yoghurt on the status of vitamins B1, B2 and B6 in young healthy women. Ann Nutr Metab 52(1):29–36.  https://doi.org/10.1159/000114408 CrossRefGoogle Scholar
  64. 64.
    Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA (2011) Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140(3):976–986.  https://doi.org/10.1053/j.gastro.2010.11.049 CrossRefGoogle Scholar
  65. 65.
    Holmes E, Li JV, Marchesi JR, Nicholson JK (2012) Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab 16(5):559–564.  https://doi.org/10.1016/j.cmet.2012.10.007 CrossRefGoogle Scholar
  66. 66.
    Leinonen R, Akhtar R, Birney E, Bower L, Cerdeno-Tarraga A, Cheng Y, Cleland I, Faruque N, Goodgame N, Gibson R, Hoad G, Jang M, Pakseresht N, Plaister S, Radhakrishnan R, Reddy K, Sobhany S, Ten Hoopen P, Vaughan R, Zalunin V, Cochrane G (2011) The European nucleotide archive. Nucleic Acids Res 39(Database issue):D28–D31.  https://doi.org/10.1093/nar/gkq967 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Centre for Food and NutritionCREA (Council for Agricultural Research and Economics)RomeItaly
  2. 2.Department of Agricultural and Food Sciences (DISTAL)University of BolognaBolognaItaly
  3. 3.Research Centre for Animal Production and AquacultureCREA (Council for Agricultural Research and Economics)LodiItaly

Personalised recommendations