Curcuma supplementation in high-fat-fed C57BL/6 mice: no beneficial effect on lipid and glucose profile or prevention of weight gain

  • Caroline Bertoncini SilvaEmail author
  • Priscila Giacomo Fassini
  • Leandra Náira Zambelli Ramalho
  • Edemilson Cardoso da Conceição
  • Aline José Coelho Moreira Zordan
  • Daniela Carlos
  • Vivian Marques Miguel Suen
Original Contribution



This experimental study investigated the effects of curcuma supplementation on weight gain, Body Adiposity Index, glucose and lipid profile, and liver and pancreas histology in C57BL/6 mice fed with a high-fat diet.


40 animals were separated into four groups: standard diet (SD), standard diet plus curcuma (SD + C), high-fat diet (HFD), and high-fat diet plus curcuma (HFD + C). Curcuma dose was 8 mg/animal/day. Histological and biochemical analyses were performed at the end of the experimental period.


Curcuma prevented weight gain, despite a higher food intake, and increased brown adipose tissue weight only in mice receiving standard diet. However, these changes were not observed in HFD + C group. The groups that received curcuma (SD + C and HFD + C) showed a pancreas with diffuse macro- and microgoticular steatosis.


Curcuma supplementation did not prevent weight gain or improved glucose and lipid profile in mice receiving high-fat diet. Furthermore, there was evidence of possible curcuma toxicity in the pancreas of C57BL/6 mice. The implications of these findings on humans still need to be investigated.


Curcuma Weight gain Phytotherapy Toxicity C57BL/6 mice 



Acyl-CoA cholesterol acyltransferase


Analysis of variance


Area under the curve


Brown adipose tissue


Butylated hydroxytoluene


Body Mass Index


Deoxyribonucleic acid


Enzyme linked immunonosorbent assay


Glucagon-like peptide-1


Glucose tolerance test


High density lipoprotein cholesterol




High-fat diet


High-fat diet plus curcuma


3-Hydroxy-3- methyl-glutaryl-coenzime A


High-power fields


High-performance liquid chromatography


Low-density lipoproteins


Non-alcoholic fatty liver disease


Non-alcoholic fatty pancreas disease


Protein kinase B


Peroxisome proliferator-activated receptor


Reactive oxygen species


Standard diet

SD + C

Standard diet plus curcuma


Sterol regulatory element-binding protein 1


Sterol regulatory element-binding protein 2


Total serum cholesterol


Uncoupling protein-1


Vascular endothelial growth factor


Vascular endothelial growth receptor 2



We thank Andreia F. C. Leone Aguiar and Paula Payão Ovidio for assistance with biochemical and histological analyses.

Author contributions

The authors responsibilities were as follows: CBS, PGF, and VMMS: design, writing, and final content of the research; CBS: conducted research; LNZR, AJCMZ, ECC, and DC: provided essential materials and support; CBS, AJCMZ, and PGF: analysed data or performed statistical analysis; CBS, PGF, and VMMS: wrote paper; CBS and VMMS: had primary responsibility for the final content. All authors have read and approved the final manuscript.


This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Grant number 134187/2015-6).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    World Health Organization (2018) Fact sheet no. 311: obesity and overweight. Accessed 30 Nov 2018
  2. 2.
    Brasil. Ministério da Saúde. Vigitel Brasil 2017. Accessed 30 Nov 2018
  3. 3.
    Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384:766–781CrossRefGoogle Scholar
  4. 4.
    Global Burden of Disease (GBD) 2015 Obesity Collaborators (2017) Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 377(1):13–27CrossRefGoogle Scholar
  5. 5.
    He Y, Yue Y, Zheng X, Zhang K, Chen S, Du Z (2015) Curcumin, inflammation and chronic diseases: how are they linked? Molecules 20(5):9183–9213CrossRefGoogle Scholar
  6. 6.
    Ejaz A, Wu D, Kwan P, Meydani M (2009) Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J Nutr 139(5):919–925CrossRefGoogle Scholar
  7. 7.
    Shao W, Yu Z, Chiang Y, Yang Y, Chai T, Foltz W, Lu H, Fantus IG, Jin T (2012) Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes. PLoS One 7(1):e28784CrossRefGoogle Scholar
  8. 8.
    Mata AR, Nelson DL, Afonso RJCF, Glória MBA, Junqueira RG (2004) Identification volatile compounds of turmeric using solid phase microextraction and gas chromatography coupled to mass spectrometry. Food Sci Technol 24(1):151–157CrossRefGoogle Scholar
  9. 9.
    Singh G, Kapoor IPS, Pandey SK, Singh OP (2003) Curcuma longa—chemical, antifungal and antibacterial investigation of rhizome oil. Indian Perfum 47(2):173–178Google Scholar
  10. 10.
    Asai A, Nakagawa K, Miyazawa T (1999) Antioxidative effects of turmeric, rosemary and capsicum extracts on membrane phospholipid peroxidation and liver lipid metabolism in mice. Biosci Biotechnol Biochem 63(12):2118–2122CrossRefGoogle Scholar
  11. 11.
    Ding L, Li J, Song B, Xiao X, Zhang B, Qi M, Huang W, Yang L, Wang Z (2016) Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway. Toxicol Appl Pharmacol 304:99–109CrossRefGoogle Scholar
  12. 12.
    Rogero MM, Calder PC (2018) Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients 10(4):432–450CrossRefGoogle Scholar
  13. 13.
    He HJ, Wang GY, Gao Y, Ling WH, Yu ZW, Jin TR (2012) Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J Diabetes 3(5):94–104CrossRefGoogle Scholar
  14. 14.
    Neyrinck AM, Alligier M, Memvanga PB, Névraumont E, Larondelle Y, Préat V, Cani PD, Delzenne NM (2013) Curcuma longa extract associated with White pepper lessens high fat-induced inflammation in subcutaneous adipose tissue. PLoS One 8(11):e81252CrossRefGoogle Scholar
  15. 15.
    Hewlings SJ, Kalman DS (2017) Curcumin: a review of its’ effects on human health. Foods 6(10):92CrossRefGoogle Scholar
  16. 16.
    Panahi Y, Hosseini MS, Khalili N, Naime E, Maieed M, Sahebkar A (2015) Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: a randomized controlled trial and an updated meta-analysis. Clin Nutr 34(6):1101–1108CrossRefGoogle Scholar
  17. 17.
    Jang EM, Choi MS, Jung UJ, Kim MJ, Kim HJ, Jeon SM, Shin SK, Seong CN, Lee MK (2008) Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters. Metabolism 57(11):1576–1583CrossRefGoogle Scholar
  18. 18.
    Madison BB (2016) Srebp2: a master regulator of sterol and fatty acid synthesis. J Lipid Res 57(3):333–335CrossRefGoogle Scholar
  19. 19.
    Miyazawa T, Nakagawa K, Kim SH, Thomas MJ, Paul L, Zingg JM, Dolnikowski GG, Roberts SB, Kimura F, Miyazawa T, Azzi A, Meydani M (2018) Curcumin and piperine supplementation of obese mice under caloric restriction modulates body fat and interleukin-1β. Nutr Metab 15:12CrossRefGoogle Scholar
  20. 20.
    Mojsov S, Weir GC, Habener JF (1987) Insulinotropin: glucagon-like peptide I (7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Investig 79(2):616–619CrossRefGoogle Scholar
  21. 21.
    van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360(15):1500–1508CrossRefGoogle Scholar
  22. 22.
    Sanchez-Delgado G, Martinez-Tellez B, Gil A, Ruiz JR (2016) Is brown adipose tissue-mediated adaptive thermogenesis the missing component of the constrained total energy expenditure model? Ann Nutr Metab 69(1):51–53CrossRefGoogle Scholar
  23. 23.
    Nishikawa S, Kamiya M, Aoyama H, Nomura M, Hyodo T, Ozeki A, Lee H, Takahashi T, Imaizumi A, Tsuda T (2018) Highly dispersible and bioavailable curcumin but not native curcumin induces brown-like adipocyte formation in mice. Mol Nutr Food Res 62(5)Google Scholar
  24. 24.
    Song Z, Revelo X, Shao W, Tian L, Zeng K, Lei H, Sun HS, Woo M, Winer D, Jin T (2018) Dietary curcumin intervention targets mouse white adipose tissue inflammation and brown adipose tissue UCP1 expression. Obesity 26(3):547–558CrossRefGoogle Scholar
  25. 25.
    Catanzaro R, Cuffari B, Italia A, Marotta F (2016) Exploring the metabolic syndrome: nonalcoholic fatty pancreas disease. World J Gastroenterol 22(34):7660–7675CrossRefGoogle Scholar
  26. 26.
    Pinnick KE, Collins SC, Londos C, Gauguier D, Clark A, Fielding BA (2008) Pancreatic ectopic fat is characterized by adipocyte infiltration and altered lipid composition. Obesity (Silver Spring) 16(3):522–530CrossRefGoogle Scholar
  27. 27.
    Van Geenen EJ, Smits MM, Schreudr TC, Van Der Peet DL, Bloemena E, Mulder CJ (2010) Nonalcoholic fatty liver disease is related to nonalcoholic fatty pancreas disease. Pancreas 39(8):1185–1190CrossRefGoogle Scholar
  28. 28.
    Goodpasture CE, Arrighi FE (1976) Effects of food seasonings on the cell cycle and chromosome morphology of mammalian cells in vitro with special reference to turmeric. Food Cosmet Toxicol 14(1):9–14CrossRefGoogle Scholar
  29. 29.
    Ahsan H, Hadi SM (1998) Strand scission in DNA induced by curcumin in the presence of Cu(II). Cancer Lett 124(1):23–30CrossRefGoogle Scholar
  30. 30.
    Cao J, Jia L, Zhou HM, Liu Y, Zhong LF (2006) Mitochondrial and nuclear DNA damage induced by curcumin in human hepatoma G2 cells. Toxicol Sci 91(2):476–483CrossRefGoogle Scholar
  31. 31.
    Urbina-Cano P, Bobadilla-Morales L, Ramírez-Herrera MA, Corona-Rivera JR, Mendoza-Magaña ML, Trovo-Sanromán R, Corona-Rivera A (2006) DNA damage in mouse lymphocytes exposed to curcumin and copper. J Appl Genet 47(4):377–382CrossRefGoogle Scholar
  32. 32.
    NTP Toxicology and Carcinogenesis Studies of Curcuma Oleoresin (1993) (CAS no. 8024-37-1) (major component 79%–85% curcumin, CAS no. 458-37-7) in F344/N rats and B6C3F1 mice (feed studies). Natl Toxicol Program Tech Rep Ser 427:1–275Google Scholar
  33. 33.
    Fang J, Lu J, Holmgren A (2005) Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity. J Biol Chem 280(26):25284–25290CrossRefGoogle Scholar
  34. 34.
    Jiménez-Osorio AS, Monroy A, Alavez S (2016) Curcumin and insulin resistance—molecular targets and clinical evidences. Biofactors 42(6):561–580CrossRefGoogle Scholar
  35. 35.
    Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818CrossRefGoogle Scholar
  36. 36.
    Wahlström B, Blennow G (1978) A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol (Cph) 43(2):86–92CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Caroline Bertoncini Silva
    • 1
    Email author
  • Priscila Giacomo Fassini
    • 1
  • Leandra Náira Zambelli Ramalho
    • 2
  • Edemilson Cardoso da Conceição
    • 3
  • Aline José Coelho Moreira Zordan
    • 1
  • Daniela Carlos
    • 4
  • Vivian Marques Miguel Suen
    • 1
  1. 1.Division of Nutrology, Department of Internal Medicine, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
  2. 2.Departament of Pathology, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
  3. 3.Faculty of Pharmacy of Federal University of GoiásGoiâniaBrazil
  4. 4.Department of Biochemistry and Immunology, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations