Advertisement

European Journal of Nutrition

, Volume 58, Issue 8, pp 3091–3107 | Cite as

High dietary intake of palm oils compromises glucose tolerance whereas high dietary intake of olive oil compromises liver lipid metabolism and integrity

  • Youzan Ferdinand Djohan
  • Eric BadiaEmail author
  • Beatrice Bonafos
  • Gilles Fouret
  • Céline Lauret
  • Anne-Marie Dupuy
  • Edith Pinot
  • Thibault Sutra
  • Sylvie Gaillet
  • Karen Lambert
  • Fabrice Raynaud
  • Nathalie Gayrard
  • Bernard Jover
  • Absalome Aké Monde
  • Jean Paul Cristol
  • Charles Coudray
  • Christine Feillet-Coudray
Original Contribution

Abstract

Purpose

Palm (PO) and olive oils (OO) are the two most consumed and/or used oils in the world for food elaboration. These oils should not be confused with the solid palm stearin which is widely used in pastry making. Large number of studies was reported dealing with adverse/beneficial cardiovascular effects of PO and OO, whereas few studies were conducted to compare their potential effects on hepatic steatosis and liver lipid metabolism. The aim of this study was to compare the metabolic effects of high intake of POs (both crude and refined) and virgin OO on surrogate parameters of glucose tolerance, hepatic lipid metabolism and liver integrity.

Methods

Thirty-two young male Wistar rats were divided into four equal groups and fed either control diet (11% energy from fat) or three high-fat diets rich in crude or refined POs or in OO (56% energy from fat), during 12 weeks. Systemic blood and liver biochemical parameters linked to glucose and lipid metabolism as well as hepatic steatosis and liver fatty acid composition were explored. The inflammation and oxidative stress status as well as the expression of several genes/proteins were also analyzed.

Results

The major effects of POs intake concerned glucose metabolism and liver fatty acid composition, whereas the major effects of OO intake concerned hepatic TG accumulation, inflammation, and cytolysis.

Conclusions

In conclusion, high dietary intake of PO compromises glucose tolerance whereas high dietary intake of OO compromises hepatic lipid composition and liver integrity. However, adverse hepatic effects of OO observed in this study may not be transposed to human since, (a) the rodent model could lead to different effects than those observed in humans and (b) the average normal OO amounts ingested in the population are lower than those corresponding to a high-fat diet. So, further studies are needed to determine a maximum non-invasive dietary intake of OO.

Keywords

Palm oil Olive oil High fat intake Liver steatosis Oxidative stress 

Abbreviations

ACC

Acetyl-CoA carboxylase

ALAT

Alanine aminotransferase

AMPK

AMP-activated protein kinase

ASAT

Aspartate aminotransferase

AUC

Area under the curve

CE

Cholesterol esters

cPO

Crude palm oil

CPT-1A

Carnitine palmitoyltransferase-1A

OO

Olive oil

FA

Fatty acid

Fabp1

Fatty acid-binding protein

FAS

Fatty acid synthase

Fat/Cd36

Fatty acid transporter/cluster of differentiation 36

CD68

Cluster of differentiation 68

DAPI

4′,6-diamidino-2-phenylindole

Gclc

Glutamate-cysteine ligase catalytic subunit

GPx

Glutathione peroxidase

GSH

Gluthatione

GssG

Oxidized gluthatione

β-HAD

β-hydroxyacyl-CoA dehydrogenase

HDL-C

HDL cholesterol

HFD

High-fat diet

HO-1

Heme oxygenase 1

HOMA-IR

Homeostasis model assessment-insulin resistance

IL-6

Interleukin-6

IPGTT

Intraperitoneal glucose tolerance test

Iκb-α

Inhibitor kappa B alpha

Mcp-1

Monocyte chemoattractant protein 1

MUFA

Monounsaturated fatty acids

Nf-κb

Nuclear factor “kappa-light-chain-enhancer” of activated β-cells

Nqo-1

NADH quinone oxidoreductase-1

Nfe2l2

Nuclear factor E2-related factor 2 (gene coding for Nrf2)

Ppargc-1α

Peroxisome proliferator activator receptor γ coactivator-1α (gene coding for PGC-1α)

Ppar-α

Peroxisome proliferator-activated receptor alpha

Ppar-γ

Peroxisome proliferator-activated receptor gamma

PUFA

Polyunsaturated fatty acids

RBC

Red blood cell

ROS

Reactive oxygen species

rPO

Refined palm oil

Rplp0

60S acidic ribosomal protein P0

SFA

Saturated fatty acids

SOD

Superoxide dismutase

TBARS

Thiobarbituric acid reactive substances

TG

Triglycerides

Tnf-α

Tumor necrosis factor alpha

Notes

Acknowledgements

We gratefully acknowledge Dr C Notarnicola, Dr V Scheuermann. Designed research (JPC, EB, CFC, CC, AM); wrote the paper (BE, CC, CFC); conducted research (YFD, GF, CL, AMD, EP, TS, SG, KL, NG, BJ), analyzed data or performed statistical analysis (EB, CC, CFC). All authors have read and approved the final manuscript.

Funding

Except YFD (who received help from University of Cocody and a modest grant from SANIA company), the authors have not received any funding or benefits from industry to conduct this study.

Supplementary material

394_2018_1854_MOESM1_ESM.docx (414 kb)
Supplementary material 1 (DOCX 413 KB)

References

  1. 1.
    Mba OI, Dumont M-J, Ngadi M (2015) Palm oil: processing, characterization and utilization in the food industry—a review. Food Bioscience 10:26–41Google Scholar
  2. 2.
    Ahsan H, Ahad A, Iqbal J, Siddiqui WA (2014) Pharmacological potential of tocotrienols: a review. Nutr Metab (Lond) 11(1):52Google Scholar
  3. 3.
    Ferguson JJ, Stojanovski E, MacDonald-Wicks L, Garg ML (2016) Fat type in phytosterol products influence their cholesterol-lowering potential: a systematic review and meta-analysis of RCTs. Prog Lipid Res 64:16–29PubMedGoogle Scholar
  4. 4.
    Odia OJ, Ofori S, Maduka O (2015) Palm oil and the heart: a review. World J Cardiol 7(3):144–149PubMedPubMedCentralGoogle Scholar
  5. 5.
    Monde A, Carbonneau MA, Michel F, Lauret C, Diabate S, Konan E et al (2011) Potential health implication of in vitro human low-density lipoprotein-vitamin E oxidation modulation by polyphenols derived from Cote d’Ivoire’s oil palm species. J Agric Food Chem 59(17):9166–9171PubMedGoogle Scholar
  6. 6.
    Bellentani S (2017) The epidemiology of non-alcoholic fatty liver disease. Liver Int 37(Suppl 1):81–84PubMedGoogle Scholar
  7. 7.
    Asrih M, Jornayvaz FR (2014) Diets and nonalcoholic fatty liver disease: the good and the bad. Clin Nutr 33(2):186–190PubMedGoogle Scholar
  8. 8.
    de Wit NJ, Afman LA, Mensink M, Muller M (2012) Phenotyping the effect of diet on non-alcoholic fatty liver disease. J Hepatol 57(6):1370–1373PubMedGoogle Scholar
  9. 9.
    Martinez-Gonzalez MA, Martin-Calvo N (2016) Mediterranean diet and life expectancy; beyond olive oil, fruits, and vegetables. Curr Opin Clin Nutr Metab Care 19(6):401–407PubMedPubMedCentralGoogle Scholar
  10. 10.
    Velasco N, Contreras A, Grassi B (2014) The Mediterranean diet, hepatic steatosis and nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care 17(5):453–457PubMedGoogle Scholar
  11. 11.
    Martinez-Gonzalez MA, Dominguez LJ, Delgado-Rodriguez M (2014) Olive oil consumption and risk of CHD and/or stroke: a meta-analysis of case-control, cohort and intervention studies. Br J Nutr 112(2):248–259PubMedGoogle Scholar
  12. 12.
    Assy N, Nassar F, Nasser G, Grosovski M (2009) Olive oil consumption and non-alcoholic fatty liver disease. World J Gastroenterol 15(15):1809–1815PubMedPubMedCentralGoogle Scholar
  13. 13.
    Priore P, Cavallo A, Gnoni A, Damiano F, Gnoni GV, Siculella L (2015) Modulation of hepatic lipid metabolism by olive oil and its phenols in nonalcoholic fatty liver disease. IUBMB Life 67(1):9–17PubMedGoogle Scholar
  14. 14.
    Metz L, Vermaelen M, Lambert K, Broca C, Sirvent P, Raynaud E et al (2005) Endurance training increases lactate transport in male Zucker fa/fa rats. Biochem Biophys Res Commun 331(4):1338–1345PubMedGoogle Scholar
  15. 15.
    Elferchichi M, Mercier J, Bourret A, Gross R, Lajoix AD, Belguith H et al (2011) Is static magnetic field exposure a new model of metabolic alteration? Comparison with Zucker rats. Int J Radiat Biol 87(5):483–490PubMedGoogle Scholar
  16. 16.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419PubMedGoogle Scholar
  17. 17.
    Yang SY, He XY, Schulz H (2005) 3-Hydroxyacyl-CoA dehydrogenase and short chain 3-hydroxyacyl-CoA dehydrogenase in human health and disease. Febs j 272(19):4874–4883PubMedGoogle Scholar
  18. 18.
    Fouret G, Gaillet S, Lecomte J, Bonafos B, Djohan F, Barea F et al (2018) Twenty-week follow-up of hepatic steatosis installation and liver mitochondrial structure and activity and their interrelation in rats fed a high fat-high fructose diet. Br J Nutr 119(4):368–380.  https://doi.org/10.1017/S0007114517003713 CrossRefPubMedGoogle Scholar
  19. 19.
    Coudray C, Fouret G, Lambert K, Ferreri C, Rieusset J, Blachnio-Zabielska A et al (2016) A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats. Br J Nutr 115(7):1155–1166PubMedGoogle Scholar
  20. 20.
    Sunderman FW Jr, Marzouk A, Hopfer SM, Zaharia O, Reid MC (1985) Increased lipid peroxidation in tissues of nickel chloride-treated rats. Ann Clin Lab Sci 15(3):229–236PubMedGoogle Scholar
  21. 21.
    Faure P, Lafond J (1995) Measurement of plasma sulfhydryl and carbonyl groups as a possible indicator of protein oxidation. In: Favier A, Cadet J, Kalyanaraman B, Fontecave M, Pierre J (eds) Analysis of free radicals in biological systems. Birkhauser Verlag, Basel, pp 237–248Google Scholar
  22. 22.
    Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106(1):207–212PubMedGoogle Scholar
  23. 23.
    Beers RF Jr, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195(1):133–140Google Scholar
  24. 24.
    Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121PubMedGoogle Scholar
  25. 25.
    Marklund S (1976) Spectrophotometric study of spontaneous disproportionation of superoxide anion radical and sensitive direct assay for superoxide dismutase. J Biol Chem 251(23):7504–7507PubMedGoogle Scholar
  26. 26.
    Mas E, Michel F, Guy A, Bultel V, Falquet Y, Chardon P et al (2008) Quantification of urinary F2-isoprostanes with 4(RS)-F4t-neuroprostane as an internal standard using gas chromatography-mass spectrometry Application to polytraumatized patients. J Chromatogr B Analyt Technol Biomed Life Sci 872(1–2):133–140PubMedGoogle Scholar
  27. 27.
    Portillo MP, Chavarri M, Duran D, Rodriguez VM, Macarulla MT (2001) Differential effects of diets that provide different lipid sources on hepatic lipogenic activities in rats under ad libitum or restricted feeding. Nutrition 17(6):467–473PubMedGoogle Scholar
  28. 28.
    Buettner R, Parhofer KG, Woenckhaus M, Wrede CE, Kunz-Schughart LA, Scholmerich J et al (2006) Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. J Mol Endocrinol 36(3):485–501PubMedGoogle Scholar
  29. 29.
    Spreafico F, Sales RC, Gil-Zamorano J, Medeiros PDC, Latasa MJ, Lima MR et al (2018) Dietary supplementation with hybrid palm oil alters liver function in the common Marmoset. Sci Rep 8(1):2765PubMedPubMedCentralGoogle Scholar
  30. 30.
    Teng KT, Nagapan G, Cheng HM, Nesaretnam K (2011) Palm olein and olive oil cause a higher increase in postprandial lipemia compared with lard but had no effect on plasma glucose, insulin and adipocytokines. Lipids 46(4):381–388PubMedGoogle Scholar
  31. 31.
    Ferro-Luzzi A, Strazzullo P, Scaccini C, Siani A, Sette S, Mariani MA et al (1984) Changing the Mediterranean diet: effects on blood lipids. Am J Clin Nutr 40(5):1027–1037PubMedGoogle Scholar
  32. 32.
    Go RE, Hwang KA, Kim YS, Kim SH, Nam KH, Choi KC (2015) Effects of palm and sunflower oils on serum cholesterol and fatty liver in rats. J Med Food 18(3):363–369PubMedGoogle Scholar
  33. 33.
    Ferramosca A, Savy V, Zara V (2008) Olive oil increases the hepatic triacylglycerol content in mice by a distinct influence on the synthesis and oxidation of fatty acids. Biosci Biotechnol Biochem 72(1):62–69PubMedGoogle Scholar
  34. 34.
    Arbones-Mainar JM, Ross K, Rucklidge GJ, Reid M, Duncan G, Arthur JR et al (2007) Extra virgin olive oils increase hepatic fat accumulation and hepatic antioxidant protein levels in APOE-/- mice. J Proteome Res 6(10):4041–4054PubMedGoogle Scholar
  35. 35.
    Hua MC, Su HM, Yao TC, Kuo ML, Lai MW, Tsai MH et al (2017) Alternation of plasma fatty acids composition and desaturase activities in children with liver steatosis. PLoS One 12(7):e0182277PubMedPubMedCentralGoogle Scholar
  36. 36.
    Duavy SMP, Salazar GJT, Leite GO, Ecker A, Barbosa NV (2017) Effect of dietary supplementation with olive and sunflower oils on lipid profile and liver histology in rats fed high cholesterol diet. Asian Pac J Trop Med 10(6):539–543PubMedGoogle Scholar
  37. 37.
    Hussein O, Grosovski M, Lasri E, Svalb S, Ravid U, Assy N (2007) Monounsaturated fat decreases hepatic lipid content in non-alcoholic fatty liver disease in rats. World J Gastroenterol 13(3):361–368PubMedPubMedCentralGoogle Scholar
  38. 38.
    Jurado-Ruiz E, Varela LM, Luque A, Berna G, Cahuana G, Martinez-Force E et al (2017) An extra virgin olive oil rich diet intervention ameliorates the nonalcoholic steatohepatitis induced by a high-fat “Western-type” diet in mice. Mol Nutr Food Res 61(3):1600549.  https://doi.org/10.1002/mnfr.201600549 CrossRefGoogle Scholar
  39. 39.
    Ryan MC, Itsiopoulos C, Thodis T, Ward G, Trost N, Hofferberth S et al (2013) The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J Hepatol 59(1):138–143PubMedGoogle Scholar
  40. 40.
    Aoun M, Michel F, Fouret G, Schlernitzauer A, Ollendorff V, Wrutniak-Cabello C et al (2011) A grape polyphenol extract modulates muscle membrane fatty acid composition and lipid metabolism in high-fat–high-sucrose diet-fed rats. Br J Nutr 106(4):491–501PubMedGoogle Scholar
  41. 41.
    Feillet-Coudray C, Aoun M, Fouret G, Bonafos B, Ramos J, Casas F et al (2013) Effects of long-term administration of saturated and n-3 fatty acid-rich diets on lipid utilisation and oxidative stress in rat liver and muscle tissues. Br J Nutr 110(10):1789–1802PubMedGoogle Scholar
  42. 42.
    Jump DB, Tripathy S, Depner CM (2013) Fatty acid-regulated transcription factors in the liver. Annu Rev Nutr 33:249–269PubMedPubMedCentralGoogle Scholar
  43. 43.
    Atshaves BP, Martin GG, Hostetler HA, McIntosh AL, Kier AB, Schroeder F (2010) Liver fatty acid-binding protein and obesity. J Nutr Biochem 21(11):1015–1032PubMedPubMedCentralGoogle Scholar
  44. 44.
    Kersten S (2014) Integrated physiology and systems biology of PPARalpha. Mol Metab 3(4):354–371PubMedPubMedCentralGoogle Scholar
  45. 45.
    Pawlak M, Lefebvre P, Staels B (2015) Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 62(3):720–733PubMedGoogle Scholar
  46. 46.
    Gavrilova O, Haluzik M, Matsusue K, Cutson JJ, Johnson L, Dietz KR et al (2003) Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem 278(36):34268–34276PubMedGoogle Scholar
  47. 47.
    Pettinelli P, Videla LA (2011) Up-regulation of PPAR-gamma mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction. J Clin Endocrinol Metab 96(5):1424–1430PubMedGoogle Scholar
  48. 48.
    Stienstra R, Duval C, Muller M, Kersten S (2007) PPARs, obesity, and inflammation. PPAR Res 2007:95974PubMedGoogle Scholar
  49. 49.
    Stienstra R, Mandard S, Patsouris D, Maass C, Kersten S, Muller M (2007) Peroxisome proliferator-activated receptor alpha protects against obesity-induced hepatic inflammation. Endocrinology 148(6):2753–2763PubMedGoogle Scholar
  50. 50.
    Zandbergen F, Plutzky J (2007) PPARalpha in atherosclerosis and inflammation. Biochim Biophys Acta 1771(8):972–982PubMedPubMedCentralGoogle Scholar
  51. 51.
    Feillet-Coudray C, Fouret G, Ebabe Elle R, Rieusset J, Bonafos B, Chabi B et al (2014) The mitochondrial-targeted antioxidant MitoQ ameliorates metabolic syndrome features in obesogenic diet-fed rats better than Apocynin or Allopurinol. Free Radic Res 48(10):1232–1246PubMedGoogle Scholar
  52. 52.
    Ferramosca A, Zara V (2014) Modulation of hepatic steatosis by dietary fatty acids. World J Gastroenterol 20(7):1746–1755PubMedPubMedCentralGoogle Scholar
  53. 53.
    Fernandez-Sanchez A, Madrigal-Santillan E, Bautista M, Esquivel-Soto J, Morales-Gonzalez A, Esquivel-Chirino C et al (2011) Inflammation, oxidative stress, and obesity. Int J Mol Sci 12(5):3117–3132PubMedPubMedCentralGoogle Scholar
  54. 54.
    Keane KN, Cruzat VF, Carlessi R, de Bittencourt PI Jr, Newsholme P (2015) Molecular events linking oxidative stress and inflammation to insulin resistance and beta-cell dysfunction. Oxid Med Cell Longev 2015:181643PubMedPubMedCentralGoogle Scholar
  55. 55.
    Meidan E, Kolesnikov Y, Tirosh O (2018) High fat diets composed of palm stearin and olive oil equally exacerbate liver inflammatory damage and metabolic stress in mice. Mol Nutr Food Res 62(13):e1700915PubMedGoogle Scholar
  56. 56.
    Marion-Letellier R, Savoye G, Ghosh S (2015) Polyunsaturated fatty acids and inflammation. IUBMB Life 67(9):659–667PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Youzan Ferdinand Djohan
    • 1
  • Eric Badia
    • 1
    Email author
  • Beatrice Bonafos
    • 2
  • Gilles Fouret
    • 2
  • Céline Lauret
    • 1
  • Anne-Marie Dupuy
    • 3
  • Edith Pinot
    • 3
  • Thibault Sutra
    • 3
  • Sylvie Gaillet
    • 2
  • Karen Lambert
    • 1
  • Fabrice Raynaud
    • 1
  • Nathalie Gayrard
    • 4
  • Bernard Jover
    • 1
  • Absalome Aké Monde
    • 5
  • Jean Paul Cristol
    • 3
  • Charles Coudray
    • 2
  • Christine Feillet-Coudray
    • 2
  1. 1.PhyMedExp, Univ. Montpellier, INSERM U1046, CNRS UMR 9214MontpellierFrance
  2. 2.DMEM, INRA, Univ. MontpellierMontpellierFrance
  3. 3.Laboratoire de Biochimie, CHU-LapeyronieMontpellierFrance
  4. 4.EA7288, Univ. MontpellierMontpellierFrance
  5. 5.Laboratoire de Biochimie, CHU, Univ. Félix Houphouët-BoignyCocodyCôte d’Ivoire

Personalised recommendations