Advertisement

Non-alcoholic fatty liver disease and obesity: the role of the gut bacteria

  • Katherine J. P. Schwenger
  • Colin M. Bolzon
  • Carrie Li
  • Johane P. Allard
Review

Abstract

Non-alcoholic fatty-liver disease (NAFLD) is now considered one of the leading causes of liver disease worldwide and is associated with metabolic syndrome and obesity. There are several factors contributing to the disease state. Recent research suggests that the intestinal microbiota (IM) and bacterial products may play a role through several mechanisms which include increased energy uptake, intestinal permeability and chronic inflammation. In addition to diet and exercise, treatment options targeting the IM are being investigated and include the use of pre-, pro- and synbiotics as well as the possibility of fecal microbial transfers. This literature review explores the relationship between NAFLD and the IM as well as highlight new IM treatment options that may become available in the near future.

Keywords

Non-alcoholic fatty liver disease Obesity Gut bacteria Prebiotics Fecal transplant 

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all authors, Dr. Allard states that there is no conflict of interest.

References

  1. 1.
    World Health Organization (2009) Global health risks: mortality and burden of disease attributable to selected major risks. World Health Organization, GenevaGoogle Scholar
  2. 2.
    Clinical Guidelines on the Identification (1998) Evaluation, and treatment of overweight and obesity in adults—the evidence report. Natl Inst Health Obes Res 6(Suppl 2):51S–209SGoogle Scholar
  3. 3.
    Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH (2009) The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9:88.  https://doi.org/10.1186/1471-2458-9-88 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pratt LA, Brody DJ (2014) Depression and obesity in the US adult household population, 2005–2010. NCHS Data Brief (167):1–8Google Scholar
  5. 5.
    Bashiardes S, Shapiro H, Rozin S, Shibolet O, Elinav E (2016) Non-alcoholic fatty liver and the gut microbiota. Mol Metab 5(9):782–794.  https://doi.org/10.1016/j.molmet.2016.06.003 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lau DC, Douketis JD, Morrison KM, Hramiak IM, Sharma AM, Ur E, Obesity Canada Clinical Practice Guidelines Expert P (2007) 2006 Canadian clinical practice guidelines on the management and prevention of obesity in adults and children [summary]. CMAJ 176 (8):S1-13.  https://doi.org/10.1503/cmaj.061409 CrossRefPubMedGoogle Scholar
  7. 7.
    Diamant A, Cleghorn MC, Milner J, Sockalingam S, Okrainec A, Jackson TD, Quereshy FA (2015) Patient and operational factors affecting wait times in a bariatric surgery program in Toronto: a retrospective cohort study. CMAJ Open 3(3):E331–E337.  https://doi.org/10.9778/cmajo.20150020 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Canadian Institue for Health Information (2014) Bariatric Surgery in Canada. CIHI, OttawaGoogle Scholar
  9. 9.
    Pitzul KB, Jackson T, Crawford S, Kwong JC, Sockalingam S, Hawa R, Urbach D, Okrainec A (2014) Understanding disposition after referral for bariatric surgery: when and why patients referred do not undergo surgery. Obes Surg 24(1):134–140.  https://doi.org/10.1007/s11695-013-1083-z CrossRefPubMedGoogle Scholar
  10. 10.
    Courcoulas AP, Christian NJ, Belle SH, Berk PD, Flum DR, Garcia L, Horlick M, Kalarchian MA, King WC, Mitchell JE, Patterson EJ, Pender JR, Pomp A, Pories WJ, Thirlby RC, Yanovski SZ, Wolfe BM, Longitudinal Assessment of Bariatric Surgery C (2013) Weight change and health outcomes at 3 years after bariatric surgery among individuals with severe obesity. JAMA 310(22):2416–2425.  https://doi.org/10.1001/jama.2013.280928 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chang SH, Stoll CR, Song J, Varela JE, Eagon CJ, Colditz GA (2014) The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003–2012. JAMA Surg 149(3):275–287.  https://doi.org/10.1001/jamasurg.2013.3654 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Clark JM, Diehl AM (2002) Hepatic steatosis and type 2 diabetes mellitus. Curr Diabetes Rep 2(3):210–215CrossRefGoogle Scholar
  13. 13.
    Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, Bellentani S (2005) Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology 42(1):44–52.  https://doi.org/10.1002/hep.20734 CrossRefPubMedGoogle Scholar
  14. 14.
    Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, Grundy SM, Hobbs HH (2004) Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40(6):1387–1395.  https://doi.org/10.1002/hep.20466 CrossRefPubMedGoogle Scholar
  15. 15.
    Vernon G, Baranova A, Younossi ZM (2011) Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 34(3):274–285.  https://doi.org/10.1111/j.1365-2036.2011.04724.x CrossRefGoogle Scholar
  16. 16.
    Targher G, Bertolini L, Padovani R, Rodella S, Tessari R, Zenari L, Day C, Arcaro G (2007) Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes care 30(5):1212–1218.  https://doi.org/10.2337/dc06-2247 CrossRefPubMedGoogle Scholar
  17. 17.
    Matteoni CA, Younossi ZM, Gramlich T, Liu NB, McCullough YC AJ (1999) Nonalcoholic FATTY LIVER DISEASE: A SPECTRUM OF CLINICAL AND PATHOLOGICAL SEverity. Gastroenterology 116(6):1413–1419CrossRefPubMedGoogle Scholar
  18. 18.
    Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, Natale S, Vanni E, Villanova N, Melchionda N, Rizzetto M (2003) Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37(4):917–923.  https://doi.org/10.1053/jhep.2003.50161 CrossRefPubMedGoogle Scholar
  19. 19.
    Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr, International Diabetes Federation Task Force on E, Prevention, Hational Heart L, Blood I, American Heart A, World Heart F, International Atherosclerosis S, International Association for the Study of O (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120 (16):1640–1645.  https://doi.org/10.1161/CIRCULATIONAHA.109.192644 CrossRefGoogle Scholar
  20. 20.
    Machado M, Marques-Vidal P, Cortez-Pinto H (2006) Hepatic histology in obese patients undergoing bariatric surgery. J Hepatol 45(4):600–606.  https://doi.org/10.1016/j.jhep.2006.06.013 CrossRefPubMedGoogle Scholar
  21. 21.
    McGarry JD, Foster DW (1980) Regulation of hepatic fatty acid oxidation and ketone body production. Ann Rev Biochem 49:395–420.  https://doi.org/10.1146/annurev.bi.49.070180.002143 CrossRefPubMedGoogle Scholar
  22. 22.
    Bugianesi E, Marchesini G, Gentilcore E, Cua IH, Vanni E, Rizzetto M, George J (2006) Fibrosis in genotype 3 chronic hepatitis C and nonalcoholic fatty liver disease: role of insulin resistance and hepatic steatosis. Hepatology 44(6):1648–1655.  https://doi.org/10.1002/hep.21429 CrossRefPubMedGoogle Scholar
  23. 23.
    Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115(5):1343–1351.  https://doi.org/10.1172/jci200523621 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schreuder TC, Verwer BJ, van Nieuwkerk CM, Mulder CJ (2008) Nonalcoholic fatty liver disease: an overview of current insights in pathogenesis, diagnosis and treatment. World J Gastroenterol WJG 14(16):2474–2486CrossRefPubMedGoogle Scholar
  25. 25.
    Petta S, Muratore C, Craxi A (2009) Non-alcoholic fatty liver disease pathogenesis: the present and the future. Dig Liver Dis (9):615–625.  https://doi.org/10.1016/j.dld.2009.01.004 CrossRefPubMedGoogle Scholar
  26. 26.
    Jacobs RL, Lingrell S, Zhao Y, Francis GA, Vance DE (2008) Hepatic CTP: phosphocholine cytidylyltransferase-alpha is a critical predictor of plasma high density lipoprotein and very low density lipoprotein. J Biol Chem 283(4):2147–2155.  https://doi.org/10.1074/jbc.M706628200 CrossRefPubMedGoogle Scholar
  27. 27.
    Dowman JK, Tomlinson JW, Newsome PN (2010) Pathogenesis of non-alcoholic fatty liver disease. QJM Mon J Assoc Physicians 103(2):71–83.  https://doi.org/10.1093/qjmed/hcp158 CrossRefGoogle Scholar
  28. 28.
    Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867.  https://doi.org/10.1038/nature05485 CrossRefGoogle Scholar
  29. 29.
    Ribeiro PS, Cortez-Pinto H, Sola S, Castro RE, Ramalho RM, Baptista A, Moura MC, Camilo ME, Rodrigues CM (2004) Hepatocyte apoptosis, expression of death receptors, and activation of NF-kappaB in the liver of nonalcoholic and alcoholic steatohepatitis patients. Am J Gastroenterol 99(9):1708–1717.  https://doi.org/10.1111/j.1572-0241.2004.40009.x CrossRefPubMedGoogle Scholar
  30. 30.
    Cortez-Pinto H, de Moura MC, Day CP (2006) Non-alcoholic steatohepatitis: from cell biology to clinical practice. J Hepatol 44(1):197–208.  https://doi.org/10.1016/j.jhep.2005.09.002 CrossRefPubMedGoogle Scholar
  31. 31.
    Klover PJ, Zimmers TA, Koniaris LG, Mooney RA (2003) Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 52(11):2784–2789CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Crespo J, Cayon A, Fernandez-Gil P, Hernandez-Guerra M, Mayorga M, Dominguez-Diez A, Fernandez-Escalante JC, Pons-Romero F (2001) Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology 34(6):1158–1163.  https://doi.org/10.1053/jhep.2001.29628 CrossRefPubMedGoogle Scholar
  33. 33.
    Gregor MF, Hotamisligil GS (2007) Thematic review series: adipocyte biology. adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res 48(9):1905–1914.  https://doi.org/10.1194/jlr.R700007-JLR200 CrossRefPubMedGoogle Scholar
  34. 34.
    Mancuso P (2016) The role of adipokinesis in chronic inflammation. Immuno Targets Ther 5:47–56.  https://doi.org/10.2147/ITT.S73223 CrossRefGoogle Scholar
  35. 35.
    Berg AH, Combs TP, Scherer PE (2002) ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Meta 13(2):84–89CrossRefGoogle Scholar
  36. 36.
    Widhalm K, Ghods E (2010) Nonalcoholic fatty liver disease: a challenge for pediatricians. Int J Obesity 34(10):1451–1467.  https://doi.org/10.1038/ijo.2010.185 CrossRefGoogle Scholar
  37. 37.
    Musso G, Gambino R, De Michieli F, Cassader M, Rizzetto M, Durazzo M, Faga E, Silli B, Pagano G (2003) Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology 37(4):909–916.  https://doi.org/10.1053/jhep.2003.50132 CrossRefPubMedGoogle Scholar
  38. 38.
    da Silva DD, Silva E, Carvalho F, Carmo H (2014) Mixtures of 3,4-methylenedioxymethamphetamine (ecstasy) and its major human metabolites act additively to induce significant toxicity to liver cells when combined at low, non-cytotoxic concentrations. J Appl Toxicol 34(6):618–627.  https://doi.org/10.1002/jat.2885 CrossRefPubMedGoogle Scholar
  39. 39.
    Solga S, Alkhuraishe AR, Clark JM, Torbenson M, Greenwald A, Diehl AM, Magnuson T (2004) Dietary composition and nonalcoholic fatty liver disease. Dig Dis Sci 49(10):1578–1583CrossRefPubMedGoogle Scholar
  40. 40.
    Vos MB, Lavine JE (2013) Dietary fructose in nonalcoholic fatty liver disease. Hepatology 57(6):2525–2531.  https://doi.org/10.1002/hep.26299 CrossRefPubMedGoogle Scholar
  41. 41.
    Pollock NK, Bundy V, Kanto W, Davis CL, Bernard PJ, Zhu H, Gutin B, Dong Y (2012) Greater fructose consumption is associated with cardiometabolic risk markers and visceral adiposity in adolescents. J Nutr 142(2):251–257.  https://doi.org/10.3945/jn.111.150219 CrossRefPubMedGoogle Scholar
  42. 42.
    Le KA, Faeh D, Stettler R, Ith M, Kreis R, Vermathen P, Boesch C, Ravussin E, Tappy L (2006) A 4-week high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. Am J Clin Nutr 84(6):1374–1379CrossRefPubMedGoogle Scholar
  43. 43.
    Kalliomaki M, Collado MC, Salminen S, Isolauri E (2008) Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87(3):534–538CrossRefPubMedGoogle Scholar
  44. 44.
    Conterno L, Fava F, Viola R, Tuohy KM (2011) Obesity and the gut microbiota: does up-regulating colonic fermentation protect against obesity and metabolic disease? Genes Nutr 6(3):241–260.  https://doi.org/10.1007/s12263-011-0230-1 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Cani PD, Delzenne NM (2009) The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Design 15(13):1546–1558CrossRefGoogle Scholar
  46. 46.
    Duseja A, Chawla YK (2014) Obesity and NAFLD: the role of bacteria and microbiota. Clin Liver Dis 18(1):59–71.  https://doi.org/10.1016/j.cld.2013.09.002 CrossRefPubMedGoogle Scholar
  47. 47.
    Dore J, Simren M, Buttle L, Guarner F (2013) Hot topics in gut microbiota. United Eur Gastroenterol J 1(5):311–318.  https://doi.org/10.1177/2050640613502477 CrossRefGoogle Scholar
  48. 48.
    Simren M, Barbara G, Flint HJ, Spiegel BM, Spiller RC, Vanner S, Verdu EF, Whorwell PJ, Zoetendal EG, Rome Foundation C (2013) Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 62(1):159–176.  https://doi.org/10.1136/gutjnl-2012-302167 CrossRefPubMedGoogle Scholar
  49. 49.
    Mai V, Draganov PV (2009) Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health. World J Gastroenterol 15(1):81–85CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bosscher D, Breynaert A, Pieters L, Hermans N (2009) Food-based strategies to modulate the composition of the intestinal microbiota and their associated health effects. J Physiol Pharmacol 60 Suppl 6:5–11PubMedGoogle Scholar
  51. 51.
    Othman M, Aguero R, Lin HC (2008) Alterations in intestinal microbial flora and human disease. Curr Opin Gastroenterol 24(1):11–16.  https://doi.org/10.1097/MOG.0b013e3282f2b0d7 CrossRefPubMedGoogle Scholar
  52. 52.
    Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341(6150):1241214.  https://doi.org/10.1126/science.1241214 CrossRefPubMedGoogle Scholar
  53. 53.
    Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Turnbaugh PJ, Kaplan LM (2013) Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Trans Med 5(178):178ra141.  https://doi.org/10.1126/scitranslmed.3005687 CrossRefGoogle Scholar
  54. 54.
    Gao R, Zhu C, Li H, Yin M, Pan C, Huang L, Kong C, Wang X, Zhang Y, Qu S, Qin H (2018) Dysbiosis signatures of gut microbiota along the sequence from healthy, young patients to those with overweight and obesity. Obesity 26(2):351–361.  https://doi.org/10.1002/oby.22088 CrossRefPubMedGoogle Scholar
  55. 55.
    Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, Shi J, Zhao S, Liu W, Wang X, Xia H, Liu Z, Cui B, Liang P, Xi L, Jin J, Ying X, Wang X, Zhao X, Li W, Jia H, Lan Z, Li F, Wang R, Sun Y, Yang M, Shen Y, Jie Z, Li J, Chen X, Zhong H, Xie H, Zhang Y, Gu W, Deng X, Shen B, Xu X, Yang H, Xu G, Bi Y, Lai S, Wang J, Qi L, Madsen L, Wang J, Ning G, Kristiansen K, Wang W (2017) Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nature medicine 23(7):859–868.  https://doi.org/10.1038/nm.4358 CrossRefPubMedGoogle Scholar
  56. 56.
    Armougom F, Henry M, Vialettes B, Raccah D, Raoult D (2009) Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PloS one 4(9):e7125.  https://doi.org/10.1371/journal.pone.0007125 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023.  https://doi.org/10.1038/4441022a CrossRefPubMedGoogle Scholar
  58. 58.
    Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, Hardt PD (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18(1):190–195.  https://doi.org/10.1038/oby.2009.167 CrossRefPubMedGoogle Scholar
  59. 59.
    Henao-Mejia J, Elinav E, Thaiss CA, Flavell RA (2013) The intestinal microbiota in chronic liver disease. Adv Immunol 117:73–97.  https://doi.org/10.1016/B978-0-12-410524-9.00003-7 CrossRefPubMedGoogle Scholar
  60. 60.
    Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez JP, Shulman GI, Gordon JI, Hoffman HM, Flavell RA (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482(7384):179–185.  https://doi.org/10.1038/nature10809 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Le Roy T, Llopis M, Lepage P, Bruneau A, Rabot S, Bevilacqua C, Martin P, Philippe C, Walker F, Bado A, Perlemuter G, Cassard-Doulcier AM, Gerard P (2013) Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 62(12):1787–1794.  https://doi.org/10.1136/gutjnl-2012-303816 CrossRefPubMedGoogle Scholar
  62. 62.
    Rabot S, Membrez M, Bruneau A, Gerard P, Harach T, Moser M, Raymond F, Mansourian R, Chou CJ (2010) Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J 24(12):4948–4959.  https://doi.org/10.1096/fj.10-164921 CrossRefPubMedGoogle Scholar
  63. 63.
    Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA (2011) Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140(3):976–986.  https://doi.org/10.1053/j.gastro.2010.11.049 CrossRefPubMedGoogle Scholar
  64. 64.
    Raman M, Ahmed I, Gillevet PM, Probert CS, Ratcliffe NM, Smith S, Greenwood R, Sikaroodi M, Lam V, Crotty P, Bailey J, Myers RP, Rioux KP (2013) Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 11(7):868–875 e861–863.  https://doi.org/10.1016/j.cgh.2013.02.015 CrossRefPubMedGoogle Scholar
  65. 65.
    Mouzaki M, Comelli EM, Arendt BM, Bonengel J, Fung SK, Fischer SE, McGilvray ID, Allard JP (2013) Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 58(1):120–127.  https://doi.org/10.1002/hep.26319 CrossRefPubMedGoogle Scholar
  66. 66.
    Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, Gill SR (2013) Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57(2):601–609.  https://doi.org/10.1002/hep.26093 CrossRefGoogle Scholar
  67. 67.
    Michail S, Lin M, Frey MR, Fanter R, Paliy O, Hilbush B, Reo NV (2015) Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. FEMS Microbiol Ecol 91(2):1–9.  https://doi.org/10.1093/femsec/fiu002 CrossRefPubMedGoogle Scholar
  68. 68.
    Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, Guy CD, Seed PC, Rawls JF, David LA, Hunault G, Oberti F, Cales P, Diehl AM (2016) The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 63(3):764–775.  https://doi.org/10.1002/hep.28356 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Da Silva HE, Teterina A, Comelli EM, Taibi A, Arendt BM, Fischer SE, Lou W, Allard JP (2018) Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance. Sci Rep 8(1):1466.  https://doi.org/10.1038/s41598-018-19753-9 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Duarte SMB, Stefano JT, Miele L, Ponziani FR, Souza-Basqueira M, Okada L, de Barros Costa FG, Toda K, Mazo DFC, Sabino EC, Carrilho FJ, Gasbarrini A, Oliveira CP (2018) Gut microbiome composition in lean patients with NASH is associated with liver damage independent of caloric intake: a prospective pilot study. Nutr Metab Cardiovasc Dis 28(4):369–384.  https://doi.org/10.1016/j.numecd.2017.10.014 CrossRefPubMedGoogle Scholar
  71. 71.
    Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44):15718–15723.  https://doi.org/10.1073/pnas.0407076101 CrossRefPubMedGoogle Scholar
  72. 72.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031.  https://doi.org/10.1038/nature05414 CrossRefPubMedGoogle Scholar
  73. 73.
    Backhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104(3):979–984.  https://doi.org/10.1073/pnas.0605374104 CrossRefPubMedGoogle Scholar
  74. 74.
    Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27(2):104–119.  https://doi.org/10.1111/j.1365-2036.2007.03562.x CrossRefPubMedGoogle Scholar
  75. 75.
    De Vuyst L, Leroy F (2011) Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. Int J Food Microbiol 149(1):73–80.  https://doi.org/10.1016/j.ijfoodmicro.2011.03.003 CrossRefPubMedGoogle Scholar
  76. 76.
    Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PloS One 7(4):e35240.  https://doi.org/10.1371/journal.pone.0035240 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, Masciana R, Forgione A, Gabrieli ML, Perotti G, Vecchio FM, Rapaccini G, Gasbarrini G, Day CP, Grieco A (2009) Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49(6):1877–1887.  https://doi.org/10.1002/hep.22848 CrossRefGoogle Scholar
  78. 78.
    Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, Gopinath S, Naidu N, Choudhury B, Weimer BC, Monack DM, Sonnenburg JL (2013) Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502(7469):96–99.  https://doi.org/10.1038/nature12503 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Kudo H, Takahara T, Yata Y, Kawai K, Zhang W, Sugiyama T (2009) Lipopolysaccharide triggered TNF-alpha-induced hepatocyte apoptosis in a murine non-alcoholic steatohepatitis model. Journal of hepatology 51(1):168–175.  https://doi.org/10.1016/j.jhep.2009.02.032 CrossRefPubMedGoogle Scholar
  80. 80.
    Guo S, Al-Sadi R, Said HM, Ma TY (2013) Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am J Pathol 182(2):375–387.  https://doi.org/10.1016/j.ajpath.2012.10.014 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Hatayama H, Iwashita J, Kuwajima A, Abe T (2007) The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochem Biophys Res Commun 356 (3):599–603.  https://doi.org/10.1016/j.bbrc.2007.03.025 CrossRefPubMedGoogle Scholar
  82. 82.
    Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58(8):1091–1103.  https://doi.org/10.1136/gut.2008.165886 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Krueger S, Hundertmark T, Kuester D, Kalinski T, Peitz U, Roessner A (2007) Helicobacter pylori alters the distribution of ZO-1 and p120ctn in primary human gastric epithelial cells. Pathol Res Pract 203(6):433–444.  https://doi.org/10.1016/j.prp.2007.04.003 CrossRefPubMedGoogle Scholar
  84. 84.
    Gaudier E, Rival M, Buisine MP, Robineau I, Hoebler C (2009) Butyrate enemas upregulate Muc genes expression but decrease adherent mucus thickness in mice colon. Physiol Res Acad Sci Bohemoslovaca 58(1):111–119Google Scholar
  85. 85.
    Wang HB, Wang PY, Wang X, Wan YL, Liu YC (2012) Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig Dis Sci 57(12):3126–3135.  https://doi.org/10.1007/s10620-012-2259-4 CrossRefPubMedGoogle Scholar
  86. 86.
    Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, Wilson KE, Glover LE, Kominsky DJ, Magnuson A, Weir TL, Ehrentraut SF, Pickel C, Kuhn KA, Lanis JM, Nguyen V, Taylor CT, Colgan SP (2015) Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17(5):662–671.  https://doi.org/10.1016/j.chom.2015.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Bomhof MR, Saha DC, Reid DT, Paul HA, Reimer RA (2014) Combined effects of oligofructose and Bifidobacterium animalis on gut microbiota and glycemia in obese rats. Obesity 22(3):763–771.  https://doi.org/10.1002/oby.20632 CrossRefPubMedGoogle Scholar
  88. 88.
    Brun P, Castagliuolo I, Di Leo V, Buda A, Pinzani M, Palu G, Martines D (2007) Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 292(2):G518–G525.  https://doi.org/10.1152/ajpgi.00024.2006 CrossRefGoogle Scholar
  89. 89.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmee E, Cousin B, Sulpice T, Chamontin B, Ferrieres J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772.  https://doi.org/10.2337/db06-1491 CrossRefGoogle Scholar
  90. 90.
    Song MJ, Kim KH, Yoon JM, Kim JB (2006) Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem Biophys Res Commun 346(3):739–745.  https://doi.org/10.1016/j.bbrc.2006.05.170 CrossRefPubMedGoogle Scholar
  91. 91.
    Harte AL, da Silva NF, Creely SJ, McGee KC, Billyard T, Youssef-Elabd EM, Tripathi G, Ashour E, Abdalla MS, Sharada HM, Amin AI, Burt AD, Kumar S, Day CP, McTernan PG (2010) Elevated endotoxin levels in non-alcoholic fatty liver disease. J Inflamm 7:15.  https://doi.org/10.1186/1476-9255-7-15 CrossRefGoogle Scholar
  92. 92.
    Thuy S, Ladurner R, Volynets V, Wagner S, Strahl S, Konigsrainer A, Maier KP, Bischoff SC, Bergheim I (2008) Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. J Nutr 138(8):1452–1455CrossRefPubMedGoogle Scholar
  93. 93.
    Volynets V, Kuper MA, Strahl S, Maier IB, Spruss A, Wagnerberger S, Konigsrainer A, Bischoff SC, Bergheim I (2012) Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Dig Dis Sci 57(7):1932–1941.  https://doi.org/10.1007/s10620-012-2112-9 CrossRefPubMedGoogle Scholar
  94. 94.
    Alisi A, Manco M, Devito R, Piemonte F, Nobili V (2010) Endotoxin and plasminogen activator inhibitor-1 serum levels associated with nonalcoholic steatohepatitis in children. J Pediatric Gastroenterol Nutr 50(6):645–649.  https://doi.org/10.1097/MPG.0b013e3181c7bdf1 CrossRefGoogle Scholar
  95. 95.
    Chen X, Zhang C, Zhao M, Shi CE, Zhu RM, Wang H, Zhao H, Wei W, Li JB, Xu DX (2011) Melatonin alleviates lipopolysaccharide-induced hepatic SREBP-1c activation and lipid accumulation in mice. J Pineal Res 51(4):416–425.  https://doi.org/10.1111/j.1600-079X.2011.00905.x CrossRefPubMedGoogle Scholar
  96. 96.
    Fukunishi S, Sujishi T, Takeshita A, Ohama H, Tsuchimoto Y, Asai A, Tsuda Y, Higuchi K (2014) Lipopolysaccharides accelerate hepatic steatosis in the development of nonalcoholic fatty liver disease in Zucker rats. J Clin Biochem Nutr 54(1):39–44.  https://doi.org/10.3164/jcbn.13-49 CrossRefPubMedGoogle Scholar
  97. 97.
    Ganz M, Szabo G (2013) Immune and inflammatory pathways in NASH. Hepatol Int 7(Suppl 2):771–781.  https://doi.org/10.1007/s12072-013-9468-6 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Aron-Wisnewsky J, Gaborit B, Dutour A, Clement K (2013) Gut microbiota and non-alcoholic fatty liver disease: new insights. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases 19 (4):338–348.  https://doi.org/10.1111/1469-0691.12140 CrossRefPubMedGoogle Scholar
  99. 99.
    Zhang G, Ghosh S (2000) Molecular mechanisms of NF-kappaB activation induced by bacterial lipopolysaccharide through Toll-like receptors. J Endotoxin Res 6(6):453–457CrossRefPubMedGoogle Scholar
  100. 100.
    Cani PD, Delzenne NM, Amar J, Burcelin R (2008) Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathol Biol 56(5):305–309.  https://doi.org/10.1016/j.patbio.2007.09.008 CrossRefPubMedGoogle Scholar
  101. 101.
    Ye D, Li FY, Lam KS, Li H, Jia W, Wang Y, Man K, Lo CM, Li X, Xu A (2012) Toll-like receptor-4 mediates obesity-induced non-alcoholic steatohepatitis through activation of X-box binding protein-1 in mice. Gut 61(7):1058–1067.  https://doi.org/10.1136/gutjnl-2011-300269 CrossRefPubMedGoogle Scholar
  102. 102.
    Poggi M, Bastelica D, Gual P, Iglesias MA, Gremeaux T, Knauf C, Peiretti F, Verdier M, Juhan-Vague I, Tanti JF, Burcelin R, Alessi MC (2007) C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue in response to a high-fat diet. Diabetologia 50(6):1267–1276.  https://doi.org/10.1007/s00125-007-0654-8 CrossRefPubMedGoogle Scholar
  103. 103.
    Saberi M, Woods NB, de Luca C, Schenk S, Lu JC, Bandyopadhyay G, Verma IM, Olefsky JM (2009) Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab 10(5):419–429.  https://doi.org/10.1016/j.cmet.2009.09.006 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Aoyama T, Paik YH, Seki E (2010) Toll-like receptor signaling and liver fibrosis. Gastroenterol Res Pract.  https://doi.org/10.1155/2010/192543 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Paik YH, Schwabe RF, Bataller R, Russo MP, Jobin C, Brenner DA (2003) Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology 37(5):1043–1055.  https://doi.org/10.1053/jhep.2003.50182 CrossRefPubMedGoogle Scholar
  106. 106.
    Sutterwala FS, Ogura Y, Flavell RA (2007) The inflammasome in pathogen recognition and inflammation. J Leukoc Biol 82(2):259–264.  https://doi.org/10.1189/jlb.1206755 CrossRefPubMedGoogle Scholar
  107. 107.
    Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426CrossRefGoogle Scholar
  108. 108.
    Dixon LJ, Berk M, Thapaliya S, Papouchado BG, Feldstein AE (2012) Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis. Lab Invest 92(5):713–723.  https://doi.org/10.1038/labinvest.2012.45 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    O’Sullivan TA, Oddy WH, Bremner AP, Sherriff JL, Ayonrinde OT, Olynyk JK, Beilin LJ, Mori TA, Adams LA (2014) Lower fructose intake may help protect against development of nonalcoholic fatty liver in adolescents with obesity. J Pediatr Gastroenterol Nutr 58(5):624–631.  https://doi.org/10.1097/MPG.0000000000000267 CrossRefPubMedGoogle Scholar
  110. 110.
    Moore JB, Gunn PJ, Fielding BA (2014) The role of dietary sugars and de novo lipogenesis in non-alcoholic fatty liver disease. Nutrients 6(12):5679–5703.  https://doi.org/10.3390/nu6125679 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Jin R, Willment A, Patel SS, Sun X, Song M, Mannery YO, Kosters A, McClain CJ, Vos MB (2014) Fructose induced endotoxemia in pediatric nonalcoholic Fatty liver disease. Int J Hepatol 2014:560620.  https://doi.org/10.1155/2014/560620 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Jegatheesan P, Beutheu S, Ventura G, Sarfati G, Nubret E, Kapel N, Waligora-Dupriet AJ, Bergheim I, Cynober L, De-Bandt JP (2016) Effect of specific amino acids on hepatic lipid metabolism in fructose-induced non-alcoholic fatty liver disease. Clin Nutr 35(1):175–182.  https://doi.org/10.1016/j.clnu.2015.01.021 CrossRefPubMedGoogle Scholar
  113. 113.
    Wagnerberger S, Spruss A, Kanuri G, Volynets V, Stahl C, Bischoff SC, Bergheim I (2012) Toll-like receptors 1–9 are elevated in livers with fructose-induced hepatic steatosis. Br J Nutr 107(12):1727–1738.  https://doi.org/10.1017/S0007114511004983 CrossRefPubMedGoogle Scholar
  114. 114.
    Arab JP, Candia R, Zapata R, Munoz C, Arancibia JP, Poniachik J, Soza A, Fuster F, Brahm J, Sanhueza E, Contreras J, Cuellar MC, Arrese M, Riquelme A (2014) Management of nonalcoholic fatty liver disease: an evidence-based clinical practice review. World J Gastroenterol 20(34):12182–12201.  https://doi.org/10.3748/wjg.v20.i34.12182 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM, Sanyal AJ (2017) The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the american association for the study of liver diseases. Hepatology.  https://doi.org/10.1002/hep.29367 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Nostedt JJ, Switzer NJ, Gill RS, Dang J, Birch DW, de Gara C, Bailey RJ, Karmali S (2016) The effect of bariatric surgery on the spectrum of fatty liver disease. Can J Gastroenterol Hepatol 2016:2059245.  https://doi.org/10.1155/2016/2059245 CrossRefGoogle Scholar
  117. 117.
    De Ridder RJ, Schoon EJ, Smulders JF, van Hout GC, Stockbrugger RW, Koek GH (2007) Review article: non-alcoholic fatty liver disease in morbidly obese patients and the effect of bariatric surgery. Aliment Pharmacol Ther 26(Suppl 2):195–201.  https://doi.org/10.1111/j.1365-2036.2007.03483.x CrossRefPubMedGoogle Scholar
  118. 118.
    Hafeez S, Ahmed MH (2013) Bariatric surgery as potential treatment for nonalcoholic fatty liver disease: a future treatment by choice or by chance? J Obes 2013:839275.  https://doi.org/10.1155/2013/839275 CrossRefGoogle Scholar
  119. 119.
    Lee YM, Low HC, Lim LG, Dan YY, Aung MO, Cheng CL, Wee A, Lim SG, Ho KY (2012) Intragastric balloon significantly improves nonalcoholic fatty liver disease activity score in obese patients with nonalcoholic steatohepatitis: a pilot study. Gastrointest Endosc 76(4):756–760.  https://doi.org/10.1016/j.gie.2012.05.023 CrossRefPubMedGoogle Scholar
  120. 120.
    Stephen S, Baranova A, Younossi ZM (2012) Nonalcoholic fatty liver disease and bariatric surgery. Expert Rev Gastroenterol Hepatol 6(2):163–171.  https://doi.org/10.1586/egh.11.97 CrossRefPubMedGoogle Scholar
  121. 121.
    Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, Crowell MD, Wing R, Rittmann BE, Krajmalnik-Brown R (2009) Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA 106(7):2365–2370.  https://doi.org/10.1073/pnas.0812600106 CrossRefPubMedGoogle Scholar
  122. 122.
    Prachand VN, Alverdy JC (2009) The role of malabsorption in bariatric surgery. World J Surg 33(10):1989–1994.  https://doi.org/10.1007/s00268-009-0101-8 CrossRefPubMedGoogle Scholar
  123. 123.
    Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, Mariat D, Corthier G, Dore J, Henegar C, Rizkalla S, Clement K (2010) Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59(12):3049–3057.  https://doi.org/10.2337/db10-0253 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Chavez-Tapia NC, Tellez-Avila FI, Barrientos-Gutierrez T, Mendez-Sanchez N, Lizardi-Cervera J, Uribe M (2010) Bariatric surgery for non-alcoholic steatohepatitis in obese patients. Cochrane Database Syst Rev.1:CD007340.  https://doi.org/10.1002/14651858.CD007340.pub2 CrossRefGoogle Scholar
  125. 125.
    Albenberg LG, Wu GD (2014) Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology 146(6):1564–1572.  https://doi.org/10.1053/j.gastro.2014.01.058 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Everard A, Lazarevic V, Gaia N, Johansson M, Stahlman M, Backhed F, Delzenne NM, Schrenzel J, Francois P, Cani PD (2014) Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J 8(10):2116–2130.  https://doi.org/10.1038/ismej.2014.45 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Barengolts E (2016) Gut microbiota, prebiotics, probiotics, and synbiotics in management of obesity and prediabetes: review of randomized controlled trials. Endocr Pract 22(10):1224–1234.  https://doi.org/10.4158/EP151157.RA CrossRefPubMedGoogle Scholar
  128. 128.
    Kobyliak N, Abenavoli L, Mykhalchyshyn G, Kononenko L, Boccuto L, Kyriienko D, Dynnyk O (2018) A multi-strain probiotic reduces the fatty liver index, cytokines and aminotransferase levels in nafld patients: evidence from a randomized clinical trial. J Gastrointestin Liver Dis 27(1):41–49.  https://doi.org/10.15403/jgld.2014.1121.271.kby CrossRefPubMedGoogle Scholar
  129. 129.
    Vajro P, Mandato C, Licenziati MR, Franzese A, Vitale DF, Lenta S, Caropreso M, Vallone G, Meli R (2011) Effects of Lactobacillus rhamnosus strain GG in pediatric obesity-related liver disease. J Pediatr Gastroenterol Nutr 52(6):740–743.  https://doi.org/10.1097/MPG.0b013e31821f9b85 CrossRefPubMedGoogle Scholar
  130. 130.
    Alisi A, Bedogni G, Baviera G, Giorgio V, Porro E, Paris C, Giammaria P, Reali L, Anania F, Nobili V (2014) Randomised clinical trial: The beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis. Aliment Pharmacol Ther 39(11):1276–1285.  https://doi.org/10.1111/apt.12758 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Mofidi F, Poustchi H, Yari Z, Nourinayyer B, Merat S, Sharafkhah M, Malekzadeh R, Hekmatdoost A (2017) Synbiotic supplementation in lean patients with non-alcoholic fatty liver disease: a pilot, randomised, double-blind, placebo-controlled, clinical trial. Br J Nutr 117(5):662–668.  https://doi.org/10.1017/S0007114517000204 CrossRefPubMedGoogle Scholar
  132. 132.
    Nilsson A, Johansson E, Ekstrom L, Bjorck I (2013) Effects of a brown beans evening meal on metabolic risk markers and appetite regulating hormones at a subsequent standardized breakfast: a randomized cross-over study. PLoS One 8(4):e59985.  https://doi.org/10.1371/journal.pone.0059985 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Smith TJ, Anderson D, Margolis LM, Sikes A, Young AJ (2011) Persistence of Lactobacillus reuteri DSM17938 in the human intestinal tract: response to consecutive and alternate-day supplementation. J Am Coll Nutr 30(4):259–264CrossRefPubMedGoogle Scholar
  134. 134.
    Mattner J, Schmidt F, Siegmund B (2016) Faecal microbiota transplantation—a clinical view. Int J Med Microbiol 306(5):310–315.  https://doi.org/10.1016/j.ijmm.2016.02.003 CrossRefPubMedGoogle Scholar
  135. 135.
    Khanna S (2018) Microbiota replacement therapies: innovation in gastrointestinal care. Clin Pharmacol Ther 103(1):102–111.  https://doi.org/10.1002/cpt.923 CrossRefPubMedGoogle Scholar
  136. 136.
    Khoruts A, Dicksved J, Jansson JK, Sadowsky MJ (2010) Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol 44(5):354–360.  https://doi.org/10.1097/MCG.0b013e3181c87e02 CrossRefPubMedGoogle Scholar
  137. 137.
    Colman RJ, Rubin DT (2014) Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis 8(12):1569–1581.  https://doi.org/10.1016/j.crohns.2014.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Paramsothy S, Paramsothy R, Rubin DT, Kamm MA, Kaakoush NO, Mitchell HM, Castano-Rodriguez N (2017) faecal microbiota transplantation for inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis 11(10):1180–1199.  https://doi.org/10.1093/ecco-jcc/jjx063 CrossRefPubMedGoogle Scholar
  139. 139.
    Halkjaer SI, Boolsen AW, Gunther S, Christensen AH, Petersen AM (2017) Can fecal microbiota transplantation cure irritable bowel syndrome? World J Gastroenterol 23(22):4112–4120.  https://doi.org/10.3748/wjg.v23.i22.4112 CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Pinn DM, Aroniadis OC, Brandt LJ (2015) Is fecal microbiota transplantation (FMT) an effective treatment for patients with functional gastrointestinal disorders (FGID)? Neurogastroenterol Motil 27(1):19–29.  https://doi.org/10.1111/nmo.12479 CrossRefPubMedGoogle Scholar
  141. 141.
    Bajaj JS, Kassam Z, Fagan A, Gavis EA, Liu E, Cox IJ, Kheradman R, Heuman D, Wang J, Gurry T, Williams R, Sikaroodi M, Fuchs M, Alm E, John B, Thacker LR, Riva A, Smith M, Taylor-Robinson SD, Gillevet PM (2017) Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology 66(6):1727–1738.  https://doi.org/10.1002/hep.29306 CrossRefPubMedGoogle Scholar
  142. 142.
    Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, Dallinga-Thie GM, Ackermans MT, Serlie MJ, Oozeer R, Derrien M, Druesne A, Van Hylckama Vlieg JE, Bloks VW, Groen AK, Heilig HG, Zoetendal EG, Stroes ES, de Vos WM, Hoekstra JB, Nieuwdorp M (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143(4):913–916 e917.  https://doi.org/10.1053/j.gastro.2012.06.031 CrossRefGoogle Scholar
  143. 143.
    Abdul-Hai A, Abdallah A, Malnick SD (2015) Influence of gut bacteria on development and progression of non-alcoholic fatty liver disease. World J Hepatol 7(12):1679–1684.  https://doi.org/10.4254/wjh.v7.i12.1679 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Katherine J. P. Schwenger
    • 1
    • 2
  • Colin M. Bolzon
    • 2
  • Carrie Li
    • 2
  • Johane P. Allard
    • 2
    • 3
    • 4
  1. 1.Institute of Medical ScienceUniversity of TorontoTorontoCanada
  2. 2.Toronto General HospitalUniversity Health NetworkTorontoCanada
  3. 3.Department of MedicineUniversity of TorontoTorontoCanada
  4. 4.Department of Nutritional SciencesUniversity of TorontoTorontoCanada

Personalised recommendations