Advertisement

Choline and choline-related nutrients in regular and preterm infant growth

  • Wolfgang Bernhard
  • Christian F. Poets
  • Axel R. Franz
Review
  • 124 Downloads

Abstract

Background

Choline is an essential nutrient, with increased requirements during development. It forms the headgroup of phosphatidylcholine and sphingomyelin in all membranes and many secretions. Phosphatidylcholine is linked to cell signaling as a phosphocholine donor to synthesize sphingomyelin from ceramide, a trigger of apoptosis, and is the major carrier of arachidonic and docosahexaenoic acid in plasma. Acetylcholine is important for neurodevelopment and the placental storage form for fetal choline supply. Betaine, a choline metabolite, functions as osmolyte and methyl donor. Their concentrations are all tightly regulated in tissues.

Clincal impact

During the fetal growth spurt at 24–34-week postmenstrual age, plasma choline is higher than beyond 34 weeks, and threefold higher than in pregnant women [45 (36–60) µmol/L vs. 14 (10–17) µmol/L]. The rapid decrease in plasma choline after premature birth suggests an untimely reduction in choline supply, as cellular uptake is proportional to plasma concentration. Supply via breast milk, with phosphocholine and α-glycerophosphocholine as its major choline components, does not prevent such postnatal decrease. Moreover, high amounts of liver PC are secreted via bile, causing rapid hepatic choline turnover via the enterohepatic cycle, and deficiency in case of pancreatic phospholipase A2 deficiency or intestinal resection. Choline deficiency causes hepatic damage and choline accretion at the expense of the lungs and other tissues.

Conclusion

Choline deficiency may contribute to the impaired lean body mass growth and pulmonary and neurocognitive development of preterm infants despite adequate macronutrient supply and weight gain. In this context, a reconsideration of current recommendations for choline supply to preterm infants is required.

Keywords

Arachidonic acid Betaine Choline Docosahexaenoic acid Enteral nutrition Essential nutrients Fetal development Growth spurt Lean body mass Membrane Methyl donor Nutrition Parenchyma Parenteral nutrition Phosphatidylcholine Preterm infant Sphingomyelin 

Abbreviations

ABC-A1

Adenosine-triphosphate binding cassette transporter A1

AF

Amniotic fluid

αGPC

α-Glycerophosphocholine

AI

Adequate intake

ApoA1

Apolipoprotein A1

ARA

Arachidonic acid

a.s.p.e.n.

American Society for Parenteral and Enteral Nutrition

ATP

Adenosine triphosphate

BHMT

Betaine:homocysteine-N-methyltransferase

CDP-choline

Cytidylyldiphosphocholine

CTP

Cytidinetriphosphate

DHA

Docosahexaenoic acid

ESPGHAN

European Society for Paediatric Gastroenterology Hepatology and Nutrition

HDL

High density lipoproteins

LC-PUFA

Long-chain poly-unsaturated fatty acid

PC

Phosphatidylcholine

PE

Phosphatidylethanolamine

PEMT

PE-N-methyltransferase

PMA

Postmenstrual age

RDA

Recommended dietary allowance

SAM

S-adenosyl-methionine

SNP

Single nucleotide polymorphism

SPH

Sphingomyelin

TPN

Total parenteral nutrition

UL

Upper tolerable limit

VLDL

Very low density lipoproteins

wk

Weeks

VLBW

Very low birth weight

ELBW

Extremely low birth weight

Notes

Acknowledgements

Funding was provided by Zentrum Ernährungsmedizin of the Medical Faculty of the University of Tuebingen and University of Hohenheim (Project no. E.1100008).

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare.

References

  1. 1.
    Beck S, Wojdyla D, Say L, Betran AP, Merialdi M, Requejo JH, Rubens C, Menon R, Van Look PF (2010) The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ 88:31–38PubMedCrossRefGoogle Scholar
  2. 2.
    Poets CF, Wallwiener D, Vetter K (2012) Risks associated with delivering infants 2 to 6 weeks before term—a review of recent data. Dtsch Arztebl Int 109:721–726PubMedPubMedCentralGoogle Scholar
  3. 3.
    Tsimis ME, Abu Al-Hamayel N, Germaine H, Burd I (2015) Prematurity: present and future. Minerva Ginecol 67:35–46PubMedGoogle Scholar
  4. 4.
    Tucker J, McGuire W (2004) Epidemiology of preterm birth. BMJ 329:675–678PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Reuter S, Moser C, Baack M (2014) Respiratory distress in the newborn. Pediatr Rev 35:417–428PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Roberts D, Brown J, Medley N, Dalziel SR (2017) Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 3:CD004454PubMedGoogle Scholar
  7. 7.
    Kribs A (2016) Minimally invasive surfactant therapy and noninvasive respiratory support. Clin Perinatol 43:755–771PubMedCrossRefGoogle Scholar
  8. 8.
    McNelis K, Fu TT, Poindexter B (2017) Nutrition for the extremely preterm infant. Clin Perinatol 44:395–406PubMedCrossRefGoogle Scholar
  9. 9.
    Maas C, Franz AR, Krogh SV, Arand J, Poets CF (2018) Growth and morbidity of extremely preterm infants after early full enteral nutrition. Arch Dis Child Fetal Neonatal Ed 103:F79–F81PubMedCrossRefGoogle Scholar
  10. 10.
    Agostoni C, Buonocore G, Carnielli VP, De Curtis M, Darmaun D, Decsi T, Domellöf M, Embleton ND, Fusch C, Genzel-Boroviczeny O, Goulet O, Kalhan SC, Kolacek S, Koletzko B, Lapillonne A, Mihatsch W, Moreno L, Neu J, Poindexter B, Puntis J, Putet G, Rigo J, Riskin A, Salle B, Sauer P, Shamir R, Szajewska H, Thureen P, Turck D, van Goudoever JB, Ziegler EE, ESPGHAN Committee on Nutrition (2010) Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr 50:85–91PubMedCrossRefGoogle Scholar
  11. 11.
    Ho MY, Yen YH (2016) Trend of nutritional support in preterm infants. Pediatr Neonatol 57:365–370PubMedCrossRefGoogle Scholar
  12. 12.
    Rogers EE, Hintz SR (2016) Early neurodevelopmental outcomes of extremely preterm infants. Semin Perinatol 40:497–509PubMedCrossRefGoogle Scholar
  13. 13.
    Jobe AH (2011) The new bronchopulmonary dysplasia. Curr Opin Pediatr 23:167–172PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Goswami I, Rochow N, Fusch G, Liu K, Marrin ML, Heckmann M, Nelle M, Fusch C (2016) Length normalized indices for fat mass and fat-free mass in preterm and term infants during the first six months of life. Nutrients 8(7):E417.  https://doi.org/10.3390/nu8070417 CrossRefPubMedGoogle Scholar
  15. 15.
    Liebscher G (1895) Untersuchungen über die Bestimmung des Düngerbedürfnisses der Ackerböden und Kulturpflanzen. J Für Landwirtsch 43:49–216Google Scholar
  16. 16.
    Hay WW Jr, Brown LD, Denne SC (2014) Energy requirements, protein-energy metabolism and balance, and carbohydrates in preterm infants. World Rev Nutr Diet 110:64–81PubMedCrossRefGoogle Scholar
  17. 17.
    Oh R, Brown DL (2003) Vitamin B12 deficiency. Am Fam Physician 67:979–986PubMedGoogle Scholar
  18. 18.
    Zeisel SH (1997) Choline: essential for brain development and function. Adv Pediatr 44:263–295PubMedGoogle Scholar
  19. 19.
    Zeisel SH, Da Costa KA, Franklin PD, Alexander EA, Lamont JT, Sheard NF, Beiser A (1991) Choline, an essential nutrient for humans. FASEB J 5:2093–2098PubMedCrossRefGoogle Scholar
  20. 20.
    Zeisel SH (2006) Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr 26:229–250PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Eagle H (1955) The minimum vitamin requirements of the L and HeLa cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J Exp Med 102:595–600PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Holmes-McNary MQ, Loy R, Mar MH, Albright CD, Zeisel SH (1997) Apoptosis is induced by choline deficiency in fetal brain and in PC12 cells. Brain Res Dev Brain Res 101:9–16PubMedCrossRefGoogle Scholar
  23. 23.
    Zeisel S (2017) Choline, other methyl-donors and epigenetics. Nutrients 9:E445.  https://doi.org/10.3390/nu9050445 CrossRefPubMedGoogle Scholar
  24. 24.
    da Costa KA, Kozyreva OG, Song J, Galanko JA, Fischer LM, Zeisel SH (2006) Common genetic polymorphisms affect the human requirement for the nutrient choline. FASEB J 20:1336–1344PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Bremer J, Greenberg D (1961) Methyl transferring enzyme system of microsomes in the biosynthesis of lecithin (phosphatidylcholine). Biochim Biophys Acta 46:205–216CrossRefGoogle Scholar
  26. 26.
    Tan HL, Mohamed R, Mohamed Z, Zain SM (2016) Phosphatidylethanolamine N-methyltransferase gene rs7946 polymorphism plays a role in risk of nonalcoholic fatty liver disease: evidence from meta-analysis. Pharmacogenet Genom 26:88–95CrossRefGoogle Scholar
  27. 27.
    Natl. Acad. Sci USA Dietary Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline (1998) Dietary reference intakes for thiamin, riboflavin, niacin, vitamin b6, folate, vitamin b12, pantothenic acid, biotin, and choline. National Academies Press (US), Washington (DC). https://www.ncbi.nlm.nih.gov/books/NBK114310/pdf/ Bookshelf_NBK114310.pdf. Accessed 13 Oct 2017
  28. 28.
    Bernhard W, Full A, Arand J, Maas C, Poets CF, Franz AR (2013) Choline supply of preterm infants: assessment of dietary intake and pathophysiological considerations. Eur J Nutr 52:1269–1278PubMedCrossRefGoogle Scholar
  29. 29.
    Maas C, Franz AR, Shunova A, Mathes M, Bleeker C, Poets CF, Schleicher E, Bernhard W (2017) Choline and polyunsaturated fatty acids in preterm infants’ maternal milk. Eur J Nutr 56:1733–1742PubMedCrossRefGoogle Scholar
  30. 30.
    Bernhard W, Haagsman HP, Tschernig T, Poets CF, Postle AD, van Eijk ME, von der Hardt H (1997) Conductive airway surfactant: surface-tension function, biochemical composition, and possible alveolar origin. Am J Respir Cell Mol Biol 17:41–50PubMedCrossRefGoogle Scholar
  31. 31.
    Koc H, Mar MH, Ranasinghe A, Swenberg JA, Zeisel SH (2002) Quantitation of choline and its metabolites in tissues and foods by liquid chromatography/electrospray ionization-isotope dilution mass spectrometry. Anal Chem 74:4734–4740PubMedCrossRefGoogle Scholar
  32. 32.
    Li Z, Agellon LB, Vance DE (2005) Phosphatidylcholine homeostasis and liver failure. J Biol Chem 280:37798–37802PubMedCrossRefGoogle Scholar
  33. 33.
    Lozada LE, Desai A, Kevala K, Lee JW, Kim HY (2017) Perinatal Brain docosahexaenoic acid concentration has a lasting impact on cognition in mice. J Nutr 147:1624–1630PubMedPubMedCentralGoogle Scholar
  34. 34.
    Makrides M, Neumann MA, Byard RW, Simmer K, Gibson RA (1994) Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr 60:189–194PubMedCrossRefGoogle Scholar
  35. 35.
    Bernhard W, Raith M, Kunze R, Koch V, Heni M, Maas C, Abele H, Poets CF, Franz AR (2015) Choline concentrations are lower in postnatal plasma of preterm infants than in cord plasma. Eur J Nutr 54:733–741PubMedCrossRefGoogle Scholar
  36. 36.
    Bernhard W, Raith M, Koch V, Maas C, Abele H, Poets CF, Franz AR (2016) Developmental changes in polyunsaturated fetal plasma phospholipids and feto-maternal plasma. Eur J Nutr 55:2265–2274PubMedCrossRefGoogle Scholar
  37. 37.
    Lockman PR, Allen DD (2002) The transport of choline. Drug Dev Ind Pharm 28:749–771PubMedCrossRefGoogle Scholar
  38. 38.
    Michel V, Yuan Z, Ramsubir S, Bakovic M (2006) Choline transport for phospholipid synthesis. Exp Biol Med (Maywood) 231:490–504CrossRefGoogle Scholar
  39. 39.
    Yuan Z, Tie A, Tarnopolsky M, Bakovic M (2006) Genomic organization, promoter activity, and expression of the human choline transporter-like protein 1. Physiol Genom 26:76–90CrossRefGoogle Scholar
  40. 40.
    Hollenbeck CB (2012) An introduction to the nutrition and metabolism of choline. Cent Nerv Syst Agents Med Chem 12:100–113PubMedCrossRefGoogle Scholar
  41. 41.
    Simon JR, Atweh S, Kuhar MJ (1976) Sodium-dependent high affinity choline uptake: a regulatory step in the synthesis of acetylcholine. J Neurochem 26:909–922PubMedCrossRefGoogle Scholar
  42. 42.
    Devés R, Krupka RM (1979) The binding and translocation steps in transport as related to substrate structure. A study of the choline carrier of erythrocytes. Biochim Biophys Acta 557:469–485PubMedCrossRefGoogle Scholar
  43. 43.
    Sentongo TA, Kumar P, Karza K, Keys L, Iyer K, Buchman AL (2010) Whole-blood-free choline and choline metabolites in infants who require chronic parenteral nutrition therapy. J Pediatr Gastroenterol Nutr 50:194–199PubMedCrossRefGoogle Scholar
  44. 44.
    Vanek VW, Borum P, Buchman A, Fessler TA, Howard L, Jeejeebhoy K, Kochevar M, Shenkin A, Valentine CJ, Novel Nutrient Task Force, Parenteral Multi-Vitamin and Multi–Trace Element Working Group, American Society for Parenteral and Enteral Nutrition (ASPEN) Board of Directors (2012) A.S.P.E.N. position paper: recommendations for changes in commercially available parenteral multivitamin and multi-trace element products. Nutr Clin Pract 27:440–491PubMedCrossRefGoogle Scholar
  45. 45.
    Gibellini F, Smith TK (2010) The Kennedy pathway—de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62:414–428PubMedCrossRefGoogle Scholar
  46. 46.
    Kennedy EP, Weiss SB (1956) The function of cytidine coenzymes in the biosynthesis of phospholipids. J Biol Chem 222:193–214PubMedGoogle Scholar
  47. 47.
    Guasch-Ferré M, Hu FB, Ruiz-Canela M, Bulló M, Toledo E, Wang DD, Corella D, Gómez-Gracia E, Fiol M, Estruch R, Lapetra J, Fitó M, Arós F, Serra-Majem L, Ros E, Dennis C, Liang L, Clish CB, Martínez-González MA, Salas-Salvadó J (2017) Plasma metabolites from choline pathway and risk of cardiovascular disease in the PREDIMED (prevention with mediterranean diet) study. J Am Heart Assoc 6:e006524.  https://doi.org/10.1161/JAHA.117.006524 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Thompson D, Pepys MB, Wood SP (1999) The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 7:169–177PubMedCrossRefGoogle Scholar
  49. 49.
    Zulfikaroglu E, Ugur M, Taflan S, Ugurlu N, Atalay A, Kalyoncu S (2007) Neurokinin B levels in maternal and umbilical cord blood in preeclamptic and normal pregnancies. J Perinat Med 35:200–220PubMedCrossRefGoogle Scholar
  50. 50.
    Lovell TM, Woods RJ, Butlin DJ, Brayley KJ, Manyonda IT, Jarvis J, Howell S, Lowry PJ (2007) Identification of a novel mammalian post-translational modification, phosphocholine, on placental secretory polypeptides. J Mol Endocrinol 39:189–198PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Torricelli M, Giovannelli A, Leucci E, Florio P, De Falco G, Torres PB, Reis FM, Leoncini L, Petraglia F (2007) Placental neurokinin B mRNA expression increases at preterm labor. Placenta 28:1020–1023PubMedCrossRefGoogle Scholar
  52. 52.
    Holmes-McNary MQ, Cheng WL, Mar MH, Fussell S, Zeisel SH (1996) Choline and choline esters in human and rat milk and in infant formulas. Am J Clin Nutr 64:572–576PubMedCrossRefGoogle Scholar
  53. 53.
    Kwon ED, Jung KY, Edsall LC, Kim HY, García-Pérez A, Burg MB (1995) Osmotic regulation of synthesis of glycerophosphocholine from phosphatidylcholine in MDCK cells. Am J Physiol 268:C402–C412PubMedCrossRefGoogle Scholar
  54. 54.
    Zablocki K, Miller SP, Garcia-Perez A, Burg MB (1991) Accumulation of glycerophosphocholine (GPC) by renal cells: osmotic regulation of GPC: choline phosphodiesterase. Proc Natl Acad Sci U S A 88:7820–7824PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Uauy R, Quan R, Gil A (1994) Role of nucleotides in intestinal development and repair: implications for infant nutrition. J Nutr 124(8 Suppl):1436S–1441SPubMedCrossRefGoogle Scholar
  56. 56.
    Liao KY, Wu TC, Huang CF, Lin CC, Huang IF, Wu L (2011) Profile of nucleotides and nucleosides in Taiwanese human milk. Pediatr Neonatol 52:93–97PubMedCrossRefGoogle Scholar
  57. 57.
    Carver JD (1999) Dietary nucleotides: effects on the immune and gastrointestinal systems. Acta Paediatr Suppl 88:83–88PubMedCrossRefGoogle Scholar
  58. 58.
    Fujimoto K, Matsui M, Fujii T, Kawashima K (2001) Decreased acetylcholine content and choline acetyltransferase mRNA expression in circulating mononuclear leukocytes and lymphoid organs of the spontaneously hypertensive rat. Life Sci 69:1629–1638PubMedCrossRefGoogle Scholar
  59. 59.
    Innis SM, Davidson AG, Bay BN, Slack PJ, Hasman D (2011) Plasma choline depletion is associated with decreased peripheral blood leukocyte acetylcholine in children with cystic fibrosis. Am J Clin Nutr 93:564–568PubMedCrossRefGoogle Scholar
  60. 60.
    Rama Sastry BV, Olubadewo J, Harbison RD, Schmidt DE (1976) Human placental cholinergic system. Occurrence, distribution and variation with gestational age of acetylcholine in human placenta. Biochem Pharmacol 25:425–431PubMedCrossRefGoogle Scholar
  61. 61.
    Patterson KY, Bhagwat SA, Williams JR, Howe JC, Holden JM (2008) USDA database for the choline content of foods: release two US. Department of Agriculture. http://www.nal.usda.gov/fnic/foodcomp/Data/Choline/Choln02.pdf. Accessed 21 July 2015
  62. 62.
    Burg MB, Ferraris JD (2008) Intracellular organic osmolytes: function and regulation. J Biol Chem 283:7309–7313PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Bernhard W, Pynn CJ, Jaworski A, Rau GA, Hohlfeld JM, Freihorst J, Poets CF, Stoll D, Postle AD (2004) Mass spectrometric analysis of surfactant metabolism in human volunteers using deuteriated choline. Am J Respir Crit Care Med 170:54–58PubMedCrossRefGoogle Scholar
  64. 64.
    Pynn CJ, Henderson NG, Clark H, Koster G, Postle W AD (2011) Specificity and rate of human and mouse liver and plasma phosphatidylcholine synthesis analyzed in vivo. J Lipid Res 52:399–407PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Grothe J, Riethmüller J, Tschürtz SM, Raith M, Pynn CJ, Stoll D, Bernhard W (2015) Plasma phosphatidylcholine alterations in cystic fibrosis patients: impaired metabolism and correlation with lung function and inflammation. Cell Physiol Biochem 35:1437–1453PubMedCrossRefGoogle Scholar
  66. 66.
    Obeid R (2013) The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway. Nutrients 5:3481–3495PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Prieur EAK, Pjetri E, Zeisel SH, Jadavji NM (2017) Reduced brain volume and impaired memory in betaine homocysteine S-methyltransferase knockout mice. Appl Physiol Nutr Metab.  https://doi.org/10.1139/apnm-2017-0182 CrossRefPubMedGoogle Scholar
  68. 68.
    Troesch B, Weber P, Mohajeri MH (2016) Potential links between impaired one-carbon metabolism due to polymorphisms, inadequate B-vitamin status, and the development of Alzheimer’s disease. Nutrients 8:E803PubMedCrossRefGoogle Scholar
  69. 69.
    da Costa KA, Corbin KD, Niculescu MD, Galanko JA, Zeisel SH (2014) Identification of new genetic polymorphisms that alter the dietary requirement for choline and vary in their distribution across ethnic and racial groups. FASEB J 28:2970–2978PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Ganz AB, Cohen VV, Swersky CC, Stover J, Vitiello GA, Lovesky J, Chuang JC, Shields K, Fomin VG, Lopez YS, Mohan S, Ganti A, Carrier B, Malysheva OV, Caudill MA (2017) Genetic variation in choline-metabolizing enzymes alters choline metabolism in young women consuming choline intakes meeting current recommendations. Int J Mol Sci 18:E252PubMedCrossRefGoogle Scholar
  71. 71.
    Weisberg IS, Jacques PF, Selhub J, Bostom AG, Chen Z, Curtis Ellison R, Eckfeldt JH, Rozen R (2001) The 1298A⟶C polymorphism in methylenetetrahydrofolate reductase (MTHFR): in vitro expression and association with homocysteine. Atherosclerosis 156:409–415PubMedCrossRefGoogle Scholar
  72. 72.
    Craciunescu CN, Johnson AR, Zeisel SH (2010) Dietary choline reverses some, but not all, effects of folate deficiency on neurogenesis and apoptosis in fetal mouse brain. J Nutr 140:1162–1166PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kohlmeier M, da Costa KA, Fischer LM, Zeisel SH (2005) Genetic variation of folate-mediated one-carbon transfer pathway predicts susceptibility to choline deficiency in humans. Proc Natl Acad Sci USA 102:16025–16030PubMedCrossRefGoogle Scholar
  74. 74.
    Mudd SH, Brosnan JT, Brosnan ME, Jacobs RL, Stabler SP, Allen RH, Vance DE, Wagner C (2007) Methyl balance and transmethylation fluxes in humans. Am J Clin Nutr 85:19–25PubMedCrossRefGoogle Scholar
  75. 75.
    Yan J, Jiang X, West AA, Perry CA, Malysheva OV, Devapatla S, Pressman E, Vermeylen F, Stabler SP, Allen RH, Caudill MA (2012) Maternal choline intake modulates maternal and fetal biomarkers of choline metabolism in humans. Am J Clin Nutr 95:1060–1071PubMedCrossRefGoogle Scholar
  76. 76.
    Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213PubMedCrossRefGoogle Scholar
  77. 77.
    da Silva RP, Nissim I, Brosnan ME, Brosnan JT (2009) Creatine synthesis: hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo. Am J Physiol Endocrinol Metab 296:E256–E261PubMedCrossRefGoogle Scholar
  78. 78.
    Allen RH, Stabler SP, Lindenbaum J (1993) Serum betaine, N,N-dimethylglycine and N-methylglycine levels in patients with cobalamin and folate deficiency and related inborn errors of metabolism. Metabolism 42:1448–1460PubMedCrossRefGoogle Scholar
  79. 79.
    Brosnan JT, da Silva RP, Brosnan ME (2011) The metabolic burden of creatine synthesis. Amino Acids 40:1325–1331PubMedCrossRefGoogle Scholar
  80. 80.
    Li Z, Agellon LB, Vance DE (2011) The role of phosphatidylethanolamine methyltransferase in a mouse model of intrahepatic cholestasis. Biochim Biophys Acta 1811:278–283PubMedCrossRefGoogle Scholar
  81. 81.
    Braissant O, Henry H, Béard E, Uldry J (2011) Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids 40:1315–1324PubMedCrossRefGoogle Scholar
  82. 82.
    Almeida LS, Salomons GS, Hogenboom F, Jakobs C, Schoffelmeer AN (2006) Exocytotic release of creatine in rat brain. Synapse 60:118–123PubMedCrossRefGoogle Scholar
  83. 83.
    Bothwell JH, Styles P, Bhakoo KK (2002) Swelling-activated taurine and creatine effluxes from rat cortical astrocytes are pharmacologically distinct. J Membr Biol 185:157–164PubMedCrossRefGoogle Scholar
  84. 84.
    Stockler S, Schutz PW, Salomons GS (2007) Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology. Subcell Biochem 46:149–166PubMedCrossRefGoogle Scholar
  85. 85.
    Resseguie ME, da Costa KA, Galanko JA, Patel M, Davis IJ, Zeisel SH (2011) Aberrant estrogen regulation of PEMT results in choline deficiency-associated liver dysfunction. J Biol Chem 286:1649–1658PubMedCrossRefGoogle Scholar
  86. 86.
    Vance DE (2013) Physiological roles of phosphatidylethanolamine N-methyltransferase. Biochim Biophys Acta 1831:626–632PubMedCrossRefGoogle Scholar
  87. 87.
    Sugasini D, Thomas R, Yalagala PCR, Tai LM, Subbaiah PV (2017) Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice. Sci Rep 7:11263PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lagarde M, Bernoud N, Brossard N, Lemaitre-Delaunay D, Thiès F, Croset M, Lecerf J (2001) Lysophosphatidylcholine as a preferred carrier form of docosahexaenoic acid to the brain. J Mol Neurosci 16:201–204PubMedCrossRefGoogle Scholar
  89. 89.
    The AOCS Lipid Library: composition, structure and biochemistry. http://aocs.files.cms-plus.com/annualmeeting/images/lipidimporthtml/lipidlibrary/Lipids/lipoprot/index.htm. Accessed 1 June 2018
  90. 90.
    Bernhard W (2016) Regulation of surfactant-associated phospholipid synthesis and secretion. In: Polin RA, Steven H, Abman DR, William EB Fetal and neonatal physiology, 5th edn. Elsevier, Amsterdam, pp 813–824Google Scholar
  91. 91.
    Lichtenberger LM (1995) The hydrophobic barrier properties of gastrointestina mucus. Annu Rev Physiol 57:565–583PubMedCrossRefGoogle Scholar
  92. 92.
    Paananen R, Postle AD, Clark G, Glumoff V, Hallman M (2002) Eustachian tube surfactant is different from alveolar surfactant: determination of phospholipid composition of porcine eustachian tube lavage fluid. J Lipid Res 43:99–106PubMedGoogle Scholar
  93. 93.
    Bernhard W, Postle AD, Rau GA, Freihorst J (2001) Pulmonary and gastric surfactants. A comparison of the effect of surface requirements on function and phospholipid composition. Comp Biochem Physiol A Mol Integr Physiol 129:173–182PubMedCrossRefGoogle Scholar
  94. 94.
    Eliakim R, Goetz GS, Rubio S, Chailley-Heu B, Shao JS, Ducroc R, Alpers DH (1997) Isolation and characterization of surfactant-like particles in rat and human colon. Am J Physiol 272:G425–G434PubMedGoogle Scholar
  95. 95.
    Gauss A, Ehehalt R, Lehmann WD, Erben G, Weiss KH, Schaefer Y, Kloeters-Plachky P, Stiehl A, Stremmel W, Sauer P, Gotthardt DN (2013) Biliary phosphatidylcholine and lysophosphatidylcholine profiles in sclerosing cholangitis. World J Gastroenterol 19:5454–5463PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Bernhard W, Maas C, Shunova A, Mathes M, Böckmann K, Bleeker C, Vek J, Poets CF, Schleicher E, Franz AR (2017) Transport of long-chain polyunsaturated fatty acids in preterm infant plasma is dominated by phosphatidylcholine. Eur J Nutr.  https://doi.org/10.1007/s00394-017-1484-1 CrossRefPubMedGoogle Scholar
  97. 97.
    Tafesse FG, Ternes P, Holthuis JC (2006) The multigenic sphingomyelin synthase family. J Biol Chem 281:29421–29425PubMedCrossRefGoogle Scholar
  98. 98.
    Wiegmann K, Schütze S, Machleidt T, Witte D, Krönke M (1994) Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 78:1005–1015PubMedCrossRefGoogle Scholar
  99. 99.
    Zhang Y, Li X, Becker KA, Gulbins E (2009) Ceramide-enriched membrane domains—structure and function. Biochim Biophys Acta 1788:178–183PubMedCrossRefGoogle Scholar
  100. 100.
    Nojima H, Freeman CM, Gulbins E, Lentsch AB (2015) Sphingolipids in liver injury, repair and regeneration. Biol Chem 396:633–643PubMedCrossRefGoogle Scholar
  101. 101.
    Chami M, Halmer R, Schnoeder L, Anne Becker K, Meier C, Fassbender K, Gulbins E, Walter S (2017) Acid sphingomyelinase deficiency enhances myelin repair after acute and chronic demyelination. PLoS One 12:e0178622PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Grassmé H, Riethmüller J, Gulbins E (2013) Ceramide in cystic fibrosis. Handb Exp Pharmacol 216:265–274CrossRefGoogle Scholar
  103. 103.
    Gault CR, Obeid LM, Hannun YA (2010) An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 688:1–23PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Hannun YA, Obeid LM (2002) The ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 277:25847–25850PubMedCrossRefGoogle Scholar
  105. 105.
    Martínez-Beamonte R, Lou-Bonafonte JM, Martínez-Gracia MV, Osada J (2013) Sphingomyelin in high-density lipoproteins: structural role and biological function. Int J Mol Sci 14:7716–7741PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Norris GH, Porter CM, Jiang C, Millar CL, Blesso CN (2017) Dietary sphingomyelin attenuates hepatic steatosis and adipose tissue inflammation in high-fat-diet-induced obese mice. J Nutr Biochem 40:36–43PubMedCrossRefGoogle Scholar
  107. 107.
    Oba C, Morifuji M, Ichikawa S, Ito K, Kawahata K, Yamaji T, Asami Y, Itou H, Sugawara T (2015) Dietary milk sphingomyelin prevents disruption of skin barrier function in hairless mice after UV-B irradiation. PLoS One 10(8):e0136377PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Greenberger NJ, Isselbacher KJ (1998) Diseases of the gallbladder and bile ducts. In: Fauci A, Braunwald E, Isselbacher KJ, Wilson JD, Martin JB (eds) Harrison’s principles of internal medicine. McGraw-Hill, New York, pp 1725–1726Google Scholar
  109. 109.
    Vance DE, Li Z, Jacobs RL (2007) Hepatic phosphatidylethanolamine N-methyltransferase, unexpected roles in animal biochemistry and physiology. J Biol Chem 282:33237–33241PubMedCrossRefGoogle Scholar
  110. 110.
    Chen AH, Innis SM, Davidson AG, James SJ (2005) Phosphatidylcholine and lysophosphatidylcholine excretion is increased in children with cystic fibrosis and is associated with plasma homocysteine, S-adenosylhomocysteine, and S-adenosylmethionine. Am J Clin Nutr 81:686–691PubMedCrossRefGoogle Scholar
  111. 111.
    Li Z, Agellon LB, Vance DE (2007) Choline redistribution during adaptation to choline deprivation. J Biol Chem 282:10283–10289PubMedCrossRefGoogle Scholar
  112. 112.
    Bernhard W, Gesche J, Raith M, Poets CF (2016) Phosphatidylcholine kinetics in neonatal rat lungs and the effects of rhuKGF and betamethasone. Am J Physiol Lung Cell Mol Physiol 310:L955–L963PubMedCrossRefGoogle Scholar
  113. 113.
    Bortnick AE, Favari E, Tao JQ, Francone OL, Reilly M, Zhang Y, Rothblat GH, Bates SR (2003) Identification and characterization of rodent ABCA1 in isolated type II pneumocytes. Am J Physiol Lung Cell Mol Physiol 285:L869–L878PubMedCrossRefGoogle Scholar
  114. 114.
    Zhou J, You Y, Ryan AJ, Mallampalli RK (2004) Upregulation of surfactant synthesis triggers ABCA1-mediated basolateral phospholipid efflux. J Lipid Res 45:1758–1767PubMedCrossRefGoogle Scholar
  115. 115.
    Bates SR, Tao JQ, Collins HL, Francone OL, Rothblat GH (2005) Pulmonary abnormalities due to ABCA1 deficiency in mice. Am J Physiol Lung Cell Mol Physiol 289:L980–L989PubMedCrossRefGoogle Scholar
  116. 116.
    Zeisel SH (2000) Choline: needed for normal development of memory. J Am Coll Nutr 19:528s–531sPubMedCrossRefGoogle Scholar
  117. 117.
    Fischer LM, da Costa KA, Galanko J, Sha W, Stephenson B, Vick J, Zeisel SH (2010) Choline intake and genetic polymorphisms influence choline metabolite concentrations in human breast milk and plasma. Am J Clin Nutr 92:336–346PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Yan J, Jiang X, West AA, Perry CA, Malysheva OV, Brenna JT, Stabler SP, Allen RH, Gregory JF 3rd, Caudill MA (2013) Pregnancy alters choline dynamics: results of a randomized trial using stable isotope methodology in pregnant and nonpregnant women. Am J Clin Nutr 98:1459–1467PubMedCrossRefGoogle Scholar
  119. 119.
    Caudill MA (2010) Pre- and postnatal health: evidence of increased choline needs. J Am Diet Assoc 110:1198–1206PubMedCrossRefGoogle Scholar
  120. 120.
    Yara M, Iwao B, Hara N, Yamanaka T, Uchino H, Inazu M (2015) Molecular and functional characterization of choline transporter in the human trophoblastic cell line JEG-3 cells. Placenta 36:631–637PubMedCrossRefGoogle Scholar
  121. 121.
    Wu BT, Dyer RA, King DJ, Richardson KJ, Innis SM (2012) Early second trimester maternal plasma choline and betaine are related to measures of early cognitive development in term infants. PLoS One 7(8):e43448.  https://doi.org/10.1371/journal.pone.0043448 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Strain JJ, McSorley EM, van Wijngaarden E, Kobrosly RW, Bonham MP, Mulhern MS, McAfee AJ, Davidson PW, Shamlaye CF, Henderson J, Watson GE, Thurston SW, Wallace JM, Ueland PM, Myers GJ (2013) Choline status and neurodevelopmental outcomes at 5 years of age in the Seychelles Child Development Nutrition Study. Br J Nutr 9:1–7Google Scholar
  123. 123.
    Davenport C, Yan J, Taesuwan S, Shields K, West AA, Jiang X, Perry CA, Malysheva OV, Stabler SP, Allen RH, Caudill MA (2015) Choline intakes exceeding recommendations during human lactation improve breast milk choline content by increasing PEMT pathway metabolites. J Nutr Biochem 26:903–911PubMedCrossRefGoogle Scholar
  124. 124.
    Bauer K, Brace RA, Stonestreet BS (2011) Fluid distribution in the fetus and neonate. In: Polin RA, Fox WW, Abman SH (eds) Fetal and neonatal physiology, 4th edn. Elsevier, Philadelphia, pp 1436–1444CrossRefGoogle Scholar
  125. 125.
    Stocker JT, Dehner LP, Husain AN (2002) Means and standard deviations of weights and measurements of lifeborn infants by body weight (Appendix 28–29). 2nd edn. In: Stocker JT, Dehner LP (eds) Stocker and Dehner’s pediatric pathology. Lippinkott Williams & Wilkins, Philadelphia, pp 1302–1304Google Scholar
  126. 126.
    Apte SV, Iyengar L (1972) Composition of the human foetus. Br J Nutr 27:305–312PubMedCrossRefGoogle Scholar
  127. 127.
    Ziegler EE, O’Donnell AM, Nelson SE, Fomon SJ (1976) Body composition of the reference fetus. Growth 40:329–341PubMedGoogle Scholar
  128. 128.
    Voigt M, Fusch C, Olbertz D, Hartmann K, Rochow N, Renken C, Schneider KTM (2006) Analysis of the neonatal collective in the Federal Republic of Germany. 12th report: presentation of detailed percentiles for the body measurement of newborns. Geburtsh Frauenheilk 66:956–970.  https://doi.org/10.1055/s-2006-924458 CrossRefGoogle Scholar
  129. 129.
    Lorenz J (2011) Fetal and neonatal body water compartment volumes with reference to growth and development. In: Polin RA, Fox WW, Abman SH (eds) Fetal and neonatal physiology, 4th edn. Elsevier, Philadelphia, pp 1445–1450CrossRefGoogle Scholar
  130. 130.
    Nahrungsergänzung M Cholin—Und Docosahexaensäure Bei Sehr Unreifen Frühgeborenen (Metabolic effects of choline and docosahexaenoic acid supplementation in preterm infants) (2015). https://www.clinicaltrials.gov/ct2/show/NCT02509728?term=choline&cntry=DE&rank=1. Accessed 1 June 2018
  131. 131.
    Böckmann K, Maas C, Franz A, Shunova A, Mathes M, Hövelmann J, Poets CF, Bernhard W (2017) Kombinierte Cholin-/Docosahexaensäure-Supplementierung bei sehr unreifen Frühgeborenen—Untersuchungen mit stabiler Isotopenmarkierung. Monatsschrift Kinderheilkunde 165(Suppl 1):S56Google Scholar
  132. 132.
    Bagci S, Brosens E, Tibboel D, De Klein A, Ijsselstijn H, Wijers CH, Roeleveld N, de Blaauw I, Broens PM, van Rooij IA, Hölscher A, Boemers TM, Pauly M, Münsterer OJ, Schmiedeke E, Schäfer M, Ure BE, Lacher M, Choinitzki V, Schumacher J, Zwink N, Jenetzky E, Katzer D, Arand J, Bartmann P, Reutter HM (2016) More than fetal urine: enteral uptake of amniotic fluid as a major predictor for fetal growth during late gestation. Eur J Pediatr 175:825–831PubMedCrossRefGoogle Scholar
  133. 133.
    Misra S, Ahn C, Ament ME, Choi HJ, Jenden DJ, Roch M, Buchman AL (1999) Plasma choline concentrations in children requiring long-term home parenteral nutrition: a case control study. JPEN J Parenter Enteral Nutr 23:305–308PubMedCrossRefGoogle Scholar
  134. 134.
    Buchman AL, Ament ME, Sohel M, Dubin M, Jenden DJ, Roch M, Pownall H, Farley W, Awal M, Ahn C (2001) Choline deficiency causes reversible hepatic abnormalities in patients receiving parenteral nutrition: proof of a human choline requirement: a placebo-controlled trial. JPEN J Parenter Enter Nutr 25:260–268CrossRefGoogle Scholar
  135. 135.
    Vanek VW, Borum P, Buchman A, Fessler TA, Howard L, Shenkin A, Valentine CJ, Novel Nutrient Task Force Parenteral Vitamin and Trace Element Working Group and the American Society for Parenteral and Enteral Nutrition A S P E N (2015) A call to action to bring safer parenteral micronutrient products to the US market. Nutr Clin Pract 30:559–569PubMedCrossRefGoogle Scholar
  136. 136.
    Hirsch MJ, Growdon JH, Wurtman RJ (1978) Relations between dietary choline or lecithin intake, serum choline levels, and various metabolic indices. Metabolism 27:953–960PubMedCrossRefGoogle Scholar
  137. 137.
    Zeisel SH, Growdon JH, Wurtman RJ, Magil SG, Logue M (1980) Normal plasma choline responses to ingested lecithin. Neurology 30:1226–1229PubMedCrossRefGoogle Scholar
  138. 138.
    Cheng W-L, Holmes-McNary MQ, Mar M-H, Lien EL, Zeisel SH (1996) Bioavailability of choline and choline esters from milk in rat pups. Nutr Biochem 7:457–464CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neonatology, Children’s Hospital, Faculty of MedicineEberhard-Karls-UniversityTübingenGermany
  2. 2.Center for Pediatric Clinical Studies, Children’s Hospital, Faculty of MedicineEberhard-Karls-UniversityTübingenGermany

Personalised recommendations