Quantitative assessment of dietary supplement intake in 77,000 French adults: impact on nutritional intake inadequacy and excessive intake

  • Philippine FassierEmail author
  • Manon Egnell
  • Camille Pouchieu
  • Marie-Paule Vasson
  • Patrice Cohen
  • Pilar Galan
  • Emmanuelle Kesse-Guyot
  • Paule Latino-Martel
  • Serge Hercberg
  • Mélanie Deschasaux
  • Mathilde Touvier
Original Contribution



Dietary supplements (DS) are largely consumed in Western countries without demonstrating their nutritional benefits and safety in the general population. The aims, in a large population-based study of French adults, were: (1) to compare the prevalence of nutrient intake inadequacy and the proportion of individuals exceeding tolerable upper intake levels (UL) between DS users and non-users, and (2) to quantify the extent of potentially “at-risk” DS use practices (e.g., DS/drugs contraindicated association or use of beta-carotene DS in smokers).


76,925 participants, 47.6% men and 52.4% women, mean age 46.9 ± 16.3 years were enrolled to the NutriNet-Santé cohort and they completed a quantitative DS questionnaire and three 24 h dietary records. A composition database including > 8000 DS was developed. Variance reduction was applied to estimate usual intakes and analyses were weighted according to the French census data.


Among DS users of the specific nutrient, DS contributed to 41% of total intake for vitamin D in men, 55% in women; and to 20% of total intake for pyridoxine in men, 21% in women. Compared to dietary intakes only, their prevalence of inadequacy was reduced by 11% for vitamin C, 9% for magnesium, 6% for pyridoxine in men, and 19% for calcium, 12% for iron, and 11% for magnesium in women (p < 0.0001). The proportion of subjects exceeding UL reached 6% for iron and 5% for magnesium in men, and 9% for iron in women. 6% of DS users had potentially “at-risk” practices.


While DS use contributed to decrease the prevalence of insufficient intake for several nutrients, it also conveyed excessive intake of iron and magnesium. Besides, a substantial proportion of potentially “at-risk” DS use practices was reported.


Dietary supplements Nutrient intake inadequacy Tolerable upper intake levels Drug interactions 



Dietary supplements


Estimated average requirement


Odds ratio


Confidence interval


Saturated fatty acids


Monounsaturated fatty acids


Polyunsaturated fatty acids



The authors thank all the volunteers of the NutriNet-Santé cohort. We extend special thanks to Ludivine Ursule, Cédric Agaesse, Claudia Chahine, Marion Genest and Anne-Elise Dussouiler, dietitians, for the elaboration of the DS composition database. We also thank Véronique Gourlet, Nathalie Arnault, Stephen Besseau, Laurent Bourhis, Yasmina Chelghoum, Than Duong Van, Younes Esseddik, Paul Flanzy, Julien Allègre, Mac Rakotondrazafy, Fabien Szabo, Roland Andrianasolo, and Fatoumata Diallo for their technical contribution to the NutriNet-Santé study. This work was conducted in the framework of the French network for Nutrition and Cancer Research (NACRe network),


This work was funded by the Cancéropôle Ile de France/Région Ile de France. Philippine Fassier and Mélanie Deschasaux were funded by PhD grants from the Cancéropôle Ile de France/Région Ile-de-France. The NutriNet-Santé study was supported by the following public institutions: Ministère de la Santé, Institut de Veille Sanitaire (InVS), Institut National de la Prévention et de l’Education pour la Santé (INPES), Région Ile-de-France (CORDDIM), Fondation pour la Recherche Médicale (FRM), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA), Conservatoire National des Arts et Métiers (CNAM) and Université Paris 13.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Clarke TC, Black LI, Stussman BJ et al (2015) Trends in the use of complementary health approaches among adults: United States, 2002–2012. Natl Health Stat Rep 79:1–16Google Scholar
  2. 2.
    Farina EK, Austin KG, Lieberman HR (2014) Concomitant dietary supplement and prescription medication use is prevalent among US adults with doctor-informed medical conditions. J Acad Nutr Diet 114:1784–1790CrossRefGoogle Scholar
  3. 3.
    Qato DM, Wilder J, Schumm LP et al (2016) Changes in prescription and over-the-counter medication and dietary supplement use among older adults in the United States, 2005 vs 2011. JAMA Intern Med 176:473–482CrossRefGoogle Scholar
  4. 4.
    Flynn A, Hirvonen T, Mensink GB et al (2009) Intake of selected nutrients from foods, from fortification and from supplements in various European countries. Food Nutr Res 53:2038CrossRefGoogle Scholar
  5. 5.
    Marques-Vidal P, Pecoud A, Hayoz D et al (2009) Prevalence and characteristics of vitamin or dietary supplement users in Lausanne, Switzerland: the CoLaus study. Eur J Clin Nutr 63:273–281CrossRefGoogle Scholar
  6. 6.
    Pouchieu C, Andreeva VA, Peneau S et al (2013) Sociodemographic, lifestyle and dietary correlates of dietary supplement use in a large sample of French adults: results from the NutriNet-Sante cohort study. Br J Nutr 110:1480–1491CrossRefGoogle Scholar
  7. 7.
    Skeie G, Braaten T, Hjartaker A et al (2009) Use of dietary supplements in the European Prospective Investigation into Cancer and Nutrition calibration study. Eur J Clin Nutr 63(Suppl 4):S226–S238CrossRefGoogle Scholar
  8. 8.
    Tetens I, Biltoft-Jensen A, Spagner C et al (2011) Intake of micronutrients among Danish adult users and non-users of dietary supplements. Food Nutr Res 55:7153CrossRefGoogle Scholar
  9. 9.
    ANSES (2017) Etude Individuelle Nationale des Consommations Alimentaires 3 (INCA 3)Google Scholar
  10. 10.
    ANSES (2009) Etude Individuelle Nationale des Consommations Alimentaires 2 (INCA 2). AFFSA Fr Food Saf Agency Maisons AlfortGoogle Scholar
  11. 11.
    Touvier M, Niravong M, Volatier JL et al (2009) Dietary patterns associated with vitamin/mineral supplement use and smoking among women of the E3N-EPIC cohort. Eur J Clin Nutr 63:39–47CrossRefGoogle Scholar
  12. 12.
    Bailey RL, Fulgoni VL, Keast DR, Dwyer JT (2012) Examination of vitamin intakes among US adults by dietary supplement use. J Acad Nutr Diet 112:657–663CrossRefGoogle Scholar
  13. 13.
    An R, Chiu CY, Andrade F (2015) Nutrient intake and use of dietary supplements among US adults with disabilities. Disabil Health J 8:240–249CrossRefGoogle Scholar
  14. 14.
    Murphy SP, White KK, Park SY, Sharma S (2007) Multivitamin-multimineral supplements’ effect on total nutrient intake. Am J Clin Nutr 85:280S–284SPubMedGoogle Scholar
  15. 15.
    Sebastian RS, Cleveland LE, Goldman JD, Moshfegh AJ (2007) Older adults who use vitamin/mineral supplements differ from nonusers in nutrient intake adequacy and dietary attitudes. J Am Diet Assoc 107:1322–1332CrossRefGoogle Scholar
  16. 16.
    French Agency for Food, Environmental and Occupational Health & Safety (2015) ANSES opinion on the evaluation of the intakes of vitamins and minerals derived from the non-enriched diet, the fortified diet and the dietary supplements in the French population: estimation of the usual intakes, the prevalences of inadequacy and the Risk of exceeding the tolerable upper levels. Accessed 30 July 2018
  17. 17.
    Druesne-Pecollo N, Latino-Martel P, Norat T et al (2010) Beta-carotene supplementation and cancer risk: a systematic review and metaanalysis of randomized controlled trials. Int J Cancer 127:172–184CrossRefGoogle Scholar
  18. 18.
    Cohen PA, Ernst E (2010) Safety of herbal supplements: a guide for cardiologists. Cardiovasc Ther 28:246–253CrossRefGoogle Scholar
  19. 19.
    de BA, van HF, Bast A (2015) Adverse food-drug interactions. Regul Toxicol Pharmacol 73:859–865CrossRefGoogle Scholar
  20. 20.
    Di LC, Ceschi A, Kupferschmidt H et al (2015) Adverse effects of plant food supplements and botanical preparations: a systematic review with critical evaluation of causality. Br J Clin Pharmacol 79:578–592CrossRefGoogle Scholar
  21. 21.
    Marder VJ (2005) The interaction of dietary supplements with antithrombotic agents: scope of the problem. Thromb Res 117:7–13CrossRefGoogle Scholar
  22. 22.
    Tsai HH, Lin HW, Simon PA et al (2012) Evaluation of documented drug interactions and contraindications associated with herbs and dietary supplements: a systematic literature review. Int J Clin Pract 66:1056–1078CrossRefGoogle Scholar
  23. 23.
    Tsai HH, Lin HW, Lu YH et al (2013) A review of potential harmful interactions between anticoagulant/antiplatelet agents and Chinese herbal medicines. PLoS One 8:e64255-CrossRefGoogle Scholar
  24. 24.
    Wittkowsky AK (2005) A systematic review and inventory of supplement effects on warfarin and other anticoagulants. Thromb Res 117:81–86CrossRefGoogle Scholar
  25. 25.
    Yetley EA (2007) Multivitamin and multimineral dietary supplements: definitions, characterization, bioavailability, and drug interactions. Am J Clin Nutr 85:269S–276SCrossRefGoogle Scholar
  26. 26.
    Zablocka-Slowinska K, Jawna K, Grajeta H, Biernat J (2014) Interactions between preparations containing female sex hormones and dietary supplements. Adv Clin Exp Med 23:657–663CrossRefGoogle Scholar
  27. 27.
    Pouchieu C, Fassier P, Druesne-Pecollo N et al (2015) Dietary supplement use among cancer survivors of the NutriNet-Sante cohort study. Br J Nutr 113:1319–1329CrossRefGoogle Scholar
  28. 28.
    Hercberg S, Castetbon K, Czernichow S et al (2010) The Nutrinet-Sante Study: a web-based prospective study on the relationship between nutrition and health and determinants of dietary patterns and nutritional status. BMC Public Health 10:242-CrossRefGoogle Scholar
  29. 29.
    Vergnaud AC, Touvier M, Mejean C et al (2011) Agreement between web-based and paper versions of a socio-demographic questionnaire in the NutriNet-Sante study. Int J Public Health 56:407–417CrossRefGoogle Scholar
  30. 30.
    Lassale C, Peneau S, Touvier M et al (2013) Validity of web-based self-reported weight and height: results of the Nutrinet-Sante study. J Med Internet Res 15:e152CrossRefGoogle Scholar
  31. 31.
    Touvier M, Mejean C, Kesse-Guyot E et al (2010) Comparison between web-based and paper versions of a self-administered anthropometric questionnaire. Eur J Epidemiol 25:287–296CrossRefGoogle Scholar
  32. 32.
    IPAQ Group (2005) Guidelines for data processing and analysis of the international physical activity questionnaire (IPAQ)Google Scholar
  33. 33.
    Vidal (1997) Dictionnaire VIDAL. VIDAL, ParisGoogle Scholar
  34. 34.
    Touvier M, Kesse-Guyot E, Mejean C et al (2011) Comparison between an interactive web-based self-administered 24 h dietary record and an interview by a dietitian for large-scale epidemiological studies. Br J Nutr 105:1055–1064CrossRefGoogle Scholar
  35. 35.
    Lassale C, Castetbon K, Laporte F et al (2015) Validation of a Web-based, self-administered, non-consecutive-day dietary record tool against urinary biomarkers. Br J Nutr 113:953–962CrossRefGoogle Scholar
  36. 36.
    Lassale C, Castetbon K, Laporte F et al (2016) Correlations between fruit, vegetables, fish, vitamins, and fatty acids estimated by web-based nonconsecutive dietary records and respective biomarkers of nutritional status. J Acad Nutr Diet 116:427–438CrossRefGoogle Scholar
  37. 37.
    Le Moulec N, Deheerger M, Preziosi P et al (2016) Validation du manuel-photos utilisé pour l’enquête alimentaire de l’étude SU.VI.MAXGoogle Scholar
  38. 38.
    NutriNet-Santé coordination (2013) Table de composition des aliments—Etude NutriNet-Santé. Economica 2013, ParisGoogle Scholar
  39. 39.
    Black AE (2000) Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes Relat Metab Disord 24:1119–1130CrossRefGoogle Scholar
  40. 40.
    Black AE (2000) The sensitivity and specificity of the Goldberg cut-off for EI:BMR for identifying diet reports of poor validity. Eur J Clin Nutr 54:395–404CrossRefGoogle Scholar
  41. 41.
    Goldberg GR, Black AE, Jebb SA et al (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr 45:569–581PubMedGoogle Scholar
  42. 42.
    INSEE (2016) French National Census Data. Inst Natl Stat Etudes EconGoogle Scholar
  43. 43.
    Carroll RJ, Midthune D, Subar AF et al (2012) Taking advantage of the strengths of 2 different dietary assessment instruments to improve intake estimates for nutritional epidemiology. Am J Epidemiol 175:340–347CrossRefGoogle Scholar
  44. 44.
    Subar AF, Dodd KW, Guenther PM et al (2006) The food propensity questionnaire: concept, development, and validation for use as a covariate in a model to estimate usual food intake. J Am Diet Assoc 106:1556–1563CrossRefGoogle Scholar
  45. 45.
    Tooze JA, Midthune D, Dodd KW et al (2006) A new statistical method for estimating the usual intake of episodically consumed foods with application to their distribution. J Am Diet Assoc 106:1575–1587CrossRefGoogle Scholar
  46. 46.
    Carriquiry AL (1999) Assessing the prevalence of nutrient inadequacy. Public Health Nutr 2:23–33CrossRefGoogle Scholar
  47. 47.
    Martin A (2001) Apports nutritionnels conseille´s pour la population française (Recommended Dietary Allowances for the French Population), 3rd edn. Tec & Doc Lavoisier, ParisGoogle Scholar
  48. 48.
    EFSA (2013) Scientific opinion on dietary reference values for vitamin C. EFSA J 11:68Google Scholar
  49. 49.
    NNR (2012) Nordic nutrition recommendations 2012. No Nord 2014:002Google Scholar
  50. 50.
    IOM (2011) Dietary intakes for calcium and vitamin D. Institute of Medicine, National Academies Press, Washington, DCGoogle Scholar
  51. 51.
    SCF (2000) Opinion of the scientific committee on food on the tolerable upper intake level of seleniumGoogle Scholar
  52. 52.
    SCF (2002) Opinion of the scientific committee on food on the tolerable upper intake level of iodineGoogle Scholar
  53. 53.
    SCF (2002) Opinion of the scientific committee on food on the tolerable upper intake level of seleniumGoogle Scholar
  54. 54.
    SCF (2003) Opinion of the scientific committee on food on the tolerable upper intake level of calciumGoogle Scholar
  55. 55.
    SCF (2003) Opinion of the scientific committee on food on the tolerable upper intake level of copperGoogle Scholar
  56. 56.
    Touvier M, Kesse E, Clavel-Chapelon F, Boutron-Ruault MC (2005) Dual Association of beta-carotene with risk of tobacco-related cancers in a cohort of French women. J Natl Cancer Inst 97:1338–1344CrossRefGoogle Scholar
  57. 57.
    Kellermann AJ, Kloft C (2011) Is there a risk of bleeding associated with standardized Ginkgo biloba extract therapy? A systematic review and meta-analysis. Pharmacotherapy 31:490–502CrossRefGoogle Scholar
  58. 58.
    Kim JM, White RH (1996) Effect of vitamin E on the anticoagulant response to warfarin. Am J Cardiol 77:545–546CrossRefGoogle Scholar
  59. 59.
    Meydani SN, Meydani M, Blumberg JB et al (1998) Assessment of the safety of supplementation with different amounts of vitamin E in healthy older adults. Am J Clin Nutr 68:311–318CrossRefGoogle Scholar
  60. 60.
    Aparicio-Ugarriza R, Luzardo-Socorro R, Palacios G et al (2018) What is the relationship between physical fitness level and macro- and micronutrient intake in Spanish older adults? Eur J Nutr. CrossRefPubMedGoogle Scholar
  61. 61.
    Food and Nutrition Board (1997) Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Institute of Medicine (IOM), National Academy Press, Washington, DCGoogle Scholar
  62. 62.
    Food and Nutrition Board (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc: a report of the panel on micronutrients. National Academy Press, Washington, DCGoogle Scholar
  63. 63.
    AICR/WCRF (2007) (2016) American Institute for Cancer Research/ World Cancer Research Fund. Food, Nutrition, Physical Activity and the Prevention of Cancer: a Global Perspective. WashingtonGoogle Scholar
  64. 64.
    Latino-Martel P, Bachmann P (2012) Antioxydative nutritional supplements throughout the cancer treatment process. Nutr Clin Metab 26:238–246CrossRefGoogle Scholar
  65. 65.
    Robinson A, McGrail MR (2004) Disclosure of CAM use to medical practitioners: a review of qualitative and quantitative studies. Complement Ther Med 12:90–98CrossRefGoogle Scholar
  66. 66.
    Andreeva VA, Salanave B, Castetbon K et al (2015) Comparison of the sociodemographic characteristics of the large NutriNet-Sante e-cohort with French Census data: the issue of volunteer bias revisited. J Epidemiol Community Health 69:893–898CrossRefGoogle Scholar
  67. 67.
    Verdot C, Torres M, Salanave B, Deschamps V (2017) Corpulence des enfants et des adultes en France métropolitaine en 2015. Résultats de l’étude Esteban et évolution depuis 2006. Bull Epidémiol Hebd 13:234–41Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Philippine Fassier
    • 1
    Email author
  • Manon Egnell
    • 1
  • Camille Pouchieu
    • 1
  • Marie-Paule Vasson
    • 2
  • Patrice Cohen
    • 3
  • Pilar Galan
    • 1
  • Emmanuelle Kesse-Guyot
    • 1
  • Paule Latino-Martel
    • 1
  • Serge Hercberg
    • 1
    • 4
  • Mélanie Deschasaux
    • 1
  • Mathilde Touvier
    • 1
  1. 1.Sorbonne Paris Cité Epidemiology and Statistics Research Center (CRESS), Nutritional Epidemiology Research Team (EREN), Inserm U1153, Inra U1125, Cnam, SMBHParis 13 UniversityBobigny CedexFrance
  2. 2.UFR Pharmacie, Inra, UMR 1019, CRNH Auvergne, Centre Jean-Perrin, CHU Gabriel-Montpied, Unité de NutritionClermont Université AuvergneClermont-FerrandFrance
  3. 3.Sociology DepartmentUniversity of RouenRouenFrance
  4. 4.Public Health DepartmentAvicenne HospitalBobigny CedexFrance

Personalised recommendations