European Journal of Nutrition

, Volume 58, Issue 4, pp 1603–1613 | Cite as

Walnut phenolic extract inhibits nuclear factor kappaB signaling in intestinal epithelial cells, and ameliorates experimental colitis and colitis-associated colon cancer in mice

  • Seong-Joon Koh
  • Youn-I Choi
  • Yuri Kim
  • Yoo-Sun Kim
  • Sang Woon Choi
  • Ji Won Kim
  • Byeong Gwan Kim
  • Kook Lae LeeEmail author
Original Contribution



Walnuts (Juglans regia) are known to have anti-cancer and immunomodulatory effects. However, little information is available on the effects of walnut phenolic extract (WPE) on intestinal inflammation and colitis-associated colon cancer.


COLO205 cells were pretreated with WPE and then stimulated with tumor necrosis factor (TNF)-α. In the acute colitis model, wild type mice (C57BL/6) were administered 4% dextran sulfate sodium (DSS) for 5 days. In the chronic colitis model, interleukin (IL)-10−/− mice were administered with either the vehicle or WPE (20 mg/kg) by oral gavage daily for 2 weeks. In an inflammation-associated tumor model, wild type mice were administered a single intraperitoneal injection of azoxymethane followed by three cycles of 2% DSS for 5 days and 2 weeks of free water consumption.


WPE significantly inhibited IL-8 and IL-1α expression in COLO205 cells. WPE attenuated both the TNF-α-induced IκB phosphorylation/degradation and NF-κB DNA binding activity. The administration of oral WPE significantly reduced the severity of colitis in both acute and chronic colitis models, including the IL-10−/− mice. In immunohistochemical staining, WPE attenuated NF-κB signaling in the colons of both colitis models. Finally, WPE also significantly reduced tumor development in a murine model of colitis-associated colon cancer (CAC).


WPE ameliorates acute and chronic colitis and CAC in mice, suggesting that WPE may have potentials for the treatment of inflammatory bowel disease.


Walnut Inflammatory bowel disease Nuclear factor kappaB Colon cancer 



This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education [Grant Number. NRF-2014R1A1A2057695(S-JK)], [2016-R1D1A1B03931961(S-JK)], by a multidisciplinary research grant-in-aid from the Seoul Metropolitan Government Seoul National University (SMG-SNU) Boramae Medical Center (02-2015-01) and by a Grant from California Walnut Commission.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Abraham C, Cho JH (2009) Inflammatory bowel disease. N Engl J Med 361(21):2066–2078. CrossRefGoogle Scholar
  2. 2.
    Ng WK, Wong SH, Ng SC (2016) Changing epidemiological trends of inflammatory bowel disease in Asia. Intest Res 14(2):111–119. CrossRefGoogle Scholar
  3. 3.
    Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema HW, Kaplan GG (2012) Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142(1):46–54. (e42; quiz e30)CrossRefGoogle Scholar
  4. 4.
    Feagins LA, Souza RF, Spechler SJ (2009) Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer. Nat Rev Gastroenterol Hepatol 6(5):297–305. CrossRefGoogle Scholar
  5. 5.
    Terzic J, Grivennikov S, Karin E, Karin M (2010) Inflammation and colon cancer. Gastroenterology 138(6):2101–2114 e2105. CrossRefGoogle Scholar
  6. 6.
    Macdonald TT, Monteleone G (2005) Immunity, inflammation, and allergy in the gut. Science 307(5717):1920–1925. CrossRefGoogle Scholar
  7. 7.
    Kagnoff MF, Eckmann L (1997) Epithelial cells as sensors for microbial infection. J Clin Invest 100(1):6–10. CrossRefGoogle Scholar
  8. 8.
    Kim JM (2014) Antimicrobial proteins in intestine and inflammatory bowel diseases. Intest Res 12(1):20–33. CrossRefGoogle Scholar
  9. 9.
    Jobin C, Sartor RB (2000) The I kappa B/NF-kappa B system: a key determinant of mucosalinflammation and protection. Am J Physiol Cell Physiol 278(3):C451–462CrossRefGoogle Scholar
  10. 10.
    Dreher ML, Maher CV, Kearney P (1996) The traditional and emerging role of nuts in healthful diets. Nutr Rev 54(8):241–245CrossRefGoogle Scholar
  11. 11.
    Majid S, Khanduja KL, Gandhi RK, Kapur S, Sharma RR (1991) Influence of ellagic acid on antioxidant defense system and lipid peroxidation in mice. Biochem Pharmacol 42(7):1441–1445CrossRefGoogle Scholar
  12. 12.
    Constantinou A, Stoner GD, Mehta R, Rao K, Runyan C, Moon R (1995) The dietary anticancer agent ellagic acid is a potent inhibitor of DNA topoisomerases in vitro. Nutr Cancer 23(2):121–130. CrossRefGoogle Scholar
  13. 13.
    Jenab M, Ferrari P, Slimani N, Norat T, Casagrande C, Overad K, Olsen A, Stripp C, Tjonneland A, Boutron-Ruault MC, Clavel-Chapelon F, Kesse E, Nieters A, Bergmann M, Boeing H, Naska A, Trichopoulou A, Palli D, Krogh V, Celentano E, Tumino R, Sacerdote C, Bueno-de-Mesquita HB, Ocke MC, Peeters PH, Engeset D, Quiros JR, Gonzalez CA, Martinez C, Chirlaque MD, Ardanaz E, Dorronsoro M, Wallstrom P, Palmqvist R, Van Guelpen B, Bingham S, San Joaquin MA, Saracci R, Kaaks R, Riboli E (2004) Association of nut and seed intake with colorectal cancer risk in the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomark Prev 13(10)1595–1603 (a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology)Google Scholar
  14. 14.
    Yeh CC, You SL, Chen CJ, Sung FC (2006) Peanut consumption and reduced risk of colorectal cancer in women: a prospective study in Taiwan. World J Gastroenterol 12(2):222–227CrossRefGoogle Scholar
  15. 15.
    Nagel JM, Brinkoetter M, Magkos F, Liu X, Chamberland JP, Shah S, Zhou J, Blackburn G, Mantzoros CS (2012) Dietary walnuts inhibit colorectal cancer growth in mice by suppressing angiogenesis. Nutrition 28(1):67–75. CrossRefGoogle Scholar
  16. 16.
    Lee J, Kim YS, Lee J, Heo SC, Lee KL, Choi SW, Kim Y (2016) Walnut phenolic extract and its bioactive compounds suppress colon cancer cell growth by regulating colon cancer stemness. Nutrients 8 (7).
  17. 17.
    Koh SJ, Choi Y, Kim BG, Lee KL, Kim DW, Kim JH, Kim JW, Kim JS (2016) Matricellular protein periostin mediates intestinal inflammation through the activation of nuclear factor kappaB signaling. PloS One 11(2):e0149652. CrossRefGoogle Scholar
  18. 18.
    Koh SJ, Kim JW, Kim BG, Lee KL, Chun J, Kim JS (2015) Fexofenadine regulates nuclear factor-kappaB signaling and endoplasmic reticulum stress in intestinal epithelial cells and ameliorates acute and chronic colitis in mice. J Pharmacol Exp Ther 352(3):455–461. CrossRefGoogle Scholar
  19. 19.
    Koh SJ, Kim JW, Kim BG, Lee KL, Im JP, Kim JS (2015) Fluoxetine inhibits hyperresponsive lamina propria mononuclear cells and bone marrow-derived dendritic cells, and ameliorates chronic colitis in IL-10-deficient mice. Dig Dis Sci 60(1):101–108. CrossRefGoogle Scholar
  20. 20.
    Dieleman LA, Palmen MJ, Akol H, Bloemena E, Pena AS, Meuwissen SG, Van Rees EP (1998) Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol 114(3):385–391CrossRefGoogle Scholar
  21. 21.
    Koh S-J, Kim JM, Kim I-K, Kim N, Jung HC, Song IS, Kim JS (2010) Fluoxetine inhibits NF-κB signaling in intestinal epithelial cells and ameliorates experimental colitis and colitis-associated colon cancer in mice. Am J Physiol-Gastrointest Liver Physiol 301(1):G9–G19Google Scholar
  22. 22.
    Koh SJ, Kim JM, Kim IK, Ko SH, Kim JS (2014) Anti-inflammatory mechanism of metformin and its effects in intestinal inflammation and colitis-associated colon cancer. J Gastroenterol Hepatol 29(3):502–510CrossRefGoogle Scholar
  23. 23.
    Willis LM, Bielinski DF, Fisher DR, Matthan NR, Joseph JA (2010) Walnut extract inhibits LPS-induced activation of BV-2 microglia via internalization of TLR4: possible involvement of phospholipase D2. Inflammation 33(5):325–333. CrossRefGoogle Scholar
  24. 24.
    Liu MC, Yang SJ, Hong D, Yang JP, Liu M, Lin Y, Huang CH, Wang CJ (2016) A simple and convenient method for the preparation of antioxidant peptides from walnut (Juglans regia L.) protein hydrolysates. Chem Cent J 10:39. CrossRefGoogle Scholar
  25. 25.
    Abiodun OO, Rodriguez-Nogales A, Algieri F, Gomez-Caravaca AM, Segura-Carretero A, Utrilla MP, Rodriguez-Cabezas ME, Galvez J (2016) Antiinflammatory and immunomodulatory activity of an ethanolic extract from the stem bark of Terminalia catappa L. (Combretaceae): in vitro and in vivo evidences. J Ethnopharmacol 192:309–319. CrossRefGoogle Scholar
  26. 26.
    Kim H, Banerjee N, Ivanov I, Pfent CM, Prudhomme KR, Bisson WH, Dashwood RH, Talcott ST, Mertens-Talcott SU (2016) Comparison of anti-inflammatory mechanisms of mango (Mangifera Indica L.) and pomegranate (Punica Granatum L.) in a preclinical model of colitis. Mol Nutr Food Res 60(9):1912–1923. CrossRefGoogle Scholar
  27. 27.
    Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759. CrossRefGoogle Scholar
  28. 28.
    Pandurangan AK, Mohebali N, Esa NM, Looi CY, Ismail S, Saadatdoust Z (2015) Gallic acid suppresses inflammation in dextran sodium sulfate-induced colitis in mice: possible mechanisms. Int Immunopharmacol 28(2):1034–1043. CrossRefGoogle Scholar
  29. 29.
    Rosillo MA, Sanchez-Hidalgo M, Cardeno A, Aparicio-Soto M, Sanchez-Fidalgo S, Villegas I, de la Lastra CA (2012) Dietary supplementation of an ellagic acid-enriched pomegranate extract attenuates chronic colonic inflammation in rats. Pharmacol Res 66(3):235–242. CrossRefGoogle Scholar
  30. 30.
    Walker DG, Williams HR, Kane SP, Mawdsley JE, Arnold J, McNeil I, Thomas HJ, Teare JP, Hart AL, Pitcher MC, Walters JR, Marshall SE, Orchard TR (2011) Differences in inflammatory bowel disease phenotype between South Asians and Northern Europeans living in North West London, UK. Am J Gastroenterol 106(7):1281–1289. CrossRefGoogle Scholar
  31. 31.
    Pinsk V, Lemberg DA, Grewal K, Barker CC, Schreiber RA, Jacobson K (2007) Inflammatory bowel disease in the South Asian pediatric population of British Columbia. Am J Gastroenterol 102(5):1077–1083. CrossRefGoogle Scholar
  32. 32.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563. CrossRefGoogle Scholar
  33. 33.
    Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7(2):27CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Seong-Joon Koh
    • 1
  • Youn-I Choi
    • 1
  • Yuri Kim
    • 2
  • Yoo-Sun Kim
    • 2
  • Sang Woon Choi
    • 3
  • Ji Won Kim
    • 1
  • Byeong Gwan Kim
    • 1
  • Kook Lae Lee
    • 1
    Email author
  1. 1.Department of Internal Medicine, Seoul National University Boramae HospitalSeoul National University College of MedicineSeoulSouth Korea
  2. 2.Department of Nutritional Science and Food ManagementEwha Womans UniversitySeoulSouth Korea
  3. 3.Chaum Life CenterCHA University School of MedicineSeoulSouth Korea

Personalised recommendations