European Journal of Nutrition

, Volume 57, Issue 4, pp 1563–1575 | Cite as

Mangiferin suppresses endoplasmic reticulum stress in perivascular adipose tissue and prevents insulin resistance in the endothelium

  • Xiaoshan Xu
  • Yupeng Chen
  • Junna Song
  • Fangjie Hou
  • Xuelian Ma
  • Baolin Liu
  • Fang HuangEmail author
Original Contribution



Mangiferin is a naturally occurring glucosylxanthone with beneficial effects on glucose and lipid homeostasis. This study investigates the potential therapeutic effect of Mangiferin in perivascular adipose tissue (PVAT) and whether it contributes to regulating insulin action in the endothelium.


Palmitate challenge evoked ROS-associated endoplasmic reticulum stress (ER stress) and NLRP3 inflammasome activation in PVAT. The conditioned medium from PA-stimulated PVAT was prepared to induce endothelial insulin resistance, and improved endothelium-dependent vasodilation in response to insulin was detected in vitro and in vivo.


Mangiferin treatment enhanced LKB1-dependent AMPK activity and suppressed ER stress with downregulation of TXNIP induction, leading to the inhibition of NLRP3 inflammasome activation evidenced by attenuated NLRP3 and cleaved caspase-1 expression as well as reduced IL-1β secretion. Moreover, Mangiferin restored insulin-mediated Akt and eNOS phosphorylations with increased NO production, immunohistochemistry examination of adipocytes, and endothelial tissue in high-fat diet-fed mice also showed that oral administration of Mangiferin inhibited ER stress and NLRP3 induction in PVAT, and then effectively prevented insulin resistance in the vessel endothelium.


Taken together, these results revealed that Mangiferin suppressed ER stress-associated NLRP3 inflammasome activation in PVAT through regulation of AMPK activity, which prevented endothelial insulin resistance. These findings suggested that the amelioration of PVAT dysfunction may be a therapeutic strategy for the prevention of endothelial insulin resistance.


Mangiferin Inflammasome ER stress Insulin resistance 



This study was supported by Research project of science and technology in the Colleges and universities of Hebei Province (QN2015181) and Youth Research Fund of Hebei University of Chinese Medicine (QNZ2014016).

Compliance with ethical standards

Conflict of interest

None relevant to this study.

Supplementary material

394_2017_1441_MOESM1_ESM.tif (57 mb)
Supplementary material 1 (TIF 58395 KB)


  1. 1.
    Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou C, Zhang J, Wu J, Zeng R, Chen YE (2012) Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation 126:1067–1078. doi: 10.1161/CIRCULATIONAHA.112.104489 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Fitzgibbons TP, Kogan S, Aouadi M, Hendricks GM, Straubhaar J, Czech MP (2011) Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am J Physiol Heart Circ Physiol 301:H1425–H1437. doi: 10.1152/ajpheart.00376.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Verhagen SN, Visseren FL (2011) Perivascular adipose tissue as a cause of atherosclerosis. Atherosclerosis 214:3–10. doi: 10.1016/j.atherosclerosis.2010.05.034 CrossRefPubMedGoogle Scholar
  4. 4.
    Sun Y, Li J, Xiao N, Wang M, Kou J, Qi L, Huang F, Liu B, Liu K (2014) Pharmacological activation of AMPK ameliorates perivascular adipose/endothelial dysfunction in a manner interdependent on AMPK and SIRT1. Pharmacol Res 89:19–28. doi: 10.1016/j.phrs.2014.07.006 CrossRefPubMedGoogle Scholar
  5. 5.
    Skilton MR, Sérusclat A, Sethu AH, Brun S, Bernard S, Balkau B, Moulin P, Bonnet F (2009) Noninvasive measurement of carotid extra-media thickness: associations with cardiovascular risk factors and intima-media thickness. JACC Cardiovasc Imaging 2:176–182. doi: 10.1016/j.jcmg.2008.09.013 CrossRefPubMedGoogle Scholar
  6. 6.
    Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G, Rothenberg FG, Neltner B, Romig-Martin SA, Dickson EW, Rudich S, Weintraub NL (2009) Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ Res 104:541–549. doi: 10.1161/CIRCRESAHA.108.182998 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Almabrouk TA, Ewart MA, Salt IP, Kennedy S (2014) Perivascular fat, AMP-activated protein kinase and vascular diseases. Br J Pharmacol 171:595–617. doi: 10.1111/bph.12479 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ringseis R, Eder K, Mooren FC, Krüger K (2015) Metabolic signals and innate immune activation in obesity and exercise. Exerc Immunol Rev 21:58–68PubMedGoogle Scholar
  9. 9.
    Bettaieb A, Nagata N, AbouBechara D, Chahed S, Morisseau C, Hammock BD, Haj FG (2013) Soluble epoxide hydrolase deficiency or inhibition attenuates diet-induced endoplasmic reticulum stress in liver and adipose tissue. J Biol Chem 288:14189–14199. doi: 10.1074/jbc.M113.458414 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–462. doi: 10.1038/nature07203 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Oslowski CM, Hara T, B O’Sullivan-Murphy, Kanekura K, Lu S, Hara M, Ishigaki S, Zhu LJ, Hayashi E, Hui ST, Greiner D, Kaufman RJ, Bortell R, Urano F (2012) Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome. Cell Metab 16:265–273. doi: 10.1016/j.cmet.2012.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen G, Shaw MH, Kim YG, Nuñez G (2009) Nod-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol 4:365–398. doi: 10.1146/annurev.pathol.4.110807.092239 CrossRefPubMedGoogle Scholar
  13. 13.
    Yin J, Wang Y, Gu L, Fan N, Ma Y, Peng Y (2015) Palmitate induces endoplasmic reticulum stress and autophagy in mature adipocytes: implications for apoptosis and inflammation. Int J Mol Med 35:932–940. doi: 10.3892/ijmm.2015.2085 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Stienstra R, Joosten LA, Koenen T, van Tits B, van Diepen JA, van den Berg SA, Rensen PC, Voshol PJ, Fantuzzi G, Hijmans A, Kersten S, Müller M, van den Berg WB, van Rooijen N, Wabitsch M, Kullberg BJ, van der Meer JW, Kanneganti T, Tack CJ, Netea MG (2010) The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulinsensitivity. Cell Metab 12:593–605. doi: 10.1016/j.cmet.2010.11.011 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Youm YH, Adijiang A, Vandanmagsar B, Burk D, Ravussin A, Dixit VD (2011) Elimination of the NLRP3-ASC inflammasome protects against chronic obesity-induced pancreatic damage. Endocrinology 152:4039–4045. doi: 10.1210/en.2011-1326 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Xu J, Zou MH (2009) Molecular insights and therapeutic targets for diabetic endothelial dysfunction. Circulation 120:1266–1286. doi: 10.1161/CIRCULATIONAHA.108.835223 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Paneni F, Costantino S, Cosentino F (2014) Insulin resistance, diabetes, and cardiovascular risk. Curr Atheroscler Rep 16:419. doi: 10.1007/s11883-014-0419-z CrossRefPubMedGoogle Scholar
  18. 18.
    Na L, Zhang Q, Jiang S, Du S, Zhang W, Li Y, Sun C, Niu Y (2015) Mangiferin supplementation improves serum lipid profiles in overweight patients with hyperlipidemia: a double-blind randomized controlled trial. Sci Rep 5:10344. doi: 10.1038/srep10344 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Apontes P, Liu Z, Su K, Benard O, Youn DY, Li X, Li W, Mirza RH, Bastie CC, Jelicks LA, Pessin JE, Muzumdar RH, Sauve AA, Chi Y (2014) Mangiferin stimulates carbohydrate oxidation and protects against metabolic disorders induced by high-fat diets. Diabetes 63:3626–3636. doi: 10.2337/db14-0006 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Li X, Cui X, Sun X, Li X, Zhu Q, Li W (2010) Mangiferin prevents diabetic nephropathy progression in streptozotocin-induced diabetic rats. Phytother Res 24:893–899. doi: 10.1002/ptr.3045 CrossRefPubMedGoogle Scholar
  21. 21.
    Zheng D, Hou J, Xiao Y, Zhao Z, Chen L (2012) Cardioprotective effect of mangiferin on left ventricular remodeling in rats. Pharmacology 90:78–87. doi: 10.1159/000339450 CrossRefPubMedGoogle Scholar
  22. 22.
    Hou J, Zheng D, Zhong G, Hu Y (2013) Mangiferin mitigates diabetic cardiomyopathy in streptozotocin-diabetic rats. Can J Physiol Pharmacol 91:759–763. doi: 10.1139/cjpp-2013-0090 CrossRefPubMedGoogle Scholar
  23. 23.
    Song J, Li J, Hou F, Wang X, Liu B (2015) Mangiferin inhibits endoplasmic reticulum stress-associated thioredoxin-interacting protein/NLRP3 inflammasome activation with regulation of AMPK in endothelial cells. Metabolism 64:428–437. doi: 10.1016/j.metabol.2014.11.008 CrossRefPubMedGoogle Scholar
  24. 24.
    Yuan HD, Quan HY, Jung MS, Kim SJ, Huang B, Kim DY, Chung SH (2011) Anti-diabetic effect of pectinase-processed ginseng radix (GINST) in high fat diet-fed ICR mice. J Ginseng Res 35(3):308. doi: 10.5142/jgr.2011.35.3.308 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Homs J, Ariza L, Pagès G, Verdú E, Casals L, Udina E, Chillón M, Bosch A, Navarro X (2011) Comparative study of peripheral neuropathy and nerve regeneration in NOD and ICR diabetic mice. J Peripher Nerv Syst Jpn 16(3):213. doi: 10.1111/j.1529-8027.2011.00345.x CrossRefGoogle Scholar
  26. 26.
    Finucane OM, Lyons CL, Murphy AM, Reynolds CM, Klinger R, Healy NP, Cooke AA, Coll RC, McAllan L, Nilaweera KN, O’Reilly ME, Tierney AC, Morine MJ, Alcala-Diaz JF, Lopez-Miranda J, O’Connor DP, O’Neill LA, McGillicuddy FC, Roche HM (2015) Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1β secretion and insulin resistance despite obesity. Diabetes 64:2116–2128. doi: 10.2337/db14-1098 CrossRefPubMedGoogle Scholar
  27. 27.
    Choi AJ, Ryter SW (2014) Inflammasomes: molecular regulation and implications for metabolic and cognitive diseases. Mol Cells 37:441–448. doi: 10.14348/molcells.2014.0104 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hardie DG (1999) Roles of the amp-activated/snf1 protein kinase family in the response to cellular stress. Biochem Soc Symp 64:13–27PubMedGoogle Scholar
  29. 29.
    Zimmerman K, Baldinger J, Mayerhofer B, Atanasov AG, Dirsch VM, Heiss EH (2015) Activated AMPK boosts the Nrf2/HO-1 signaling axis—a role for the unfolded protein response. Free Radic Biol Med S0891–S5849:00154–00159. doi: 10.1016/j.freeradbiomed.2015.03.030 CrossRefGoogle Scholar
  30. 30.
    Niu Y, Li S, Na L, Feng R, Liu L, Li Y, Sun C (2012) Mangiferin decreases plasma free fatty acids through promoting its catabolism in liver by activation of AMPK. PLoS One 7:e30782. doi: 10.1371/journal.pone.0030782 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Dutta KK, Nishinaka Y, Masutani H, Akatsuka S, Aung TT, Shirase T, Lee WH, Yamada Y, Hiai H, Yodoi J, Toyokuni S (2005) Two distinct mechanisms for loss of thioredoxin-binding protein-2 in oxidative stress-induced renal carcinogenesis. Lab Invest 85:798–807. doi: 10.1038/labinvest.3700280 CrossRefPubMedGoogle Scholar
  32. 32.
    Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:136–140. doi: 10.1038/ni.1831 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xiaoshan Xu
    • 1
  • Yupeng Chen
    • 1
  • Junna Song
    • 2
  • Fangjie Hou
    • 3
  • Xuelian Ma
    • 4
  • Baolin Liu
    • 1
  • Fang Huang
    • 1
    Email author
  1. 1.Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical UniversityNanjingChina
  2. 2.Hebei University of Chinese Medicine, Pharmaceutical Botany OfficeHebeiChina
  3. 3.Hebei University of Chinese Medicine, Pharmacognosy OfficeHebeiChina
  4. 4.Scientific Research Center of Hebei University of Chinese MedicineHebeiChina

Personalised recommendations