Advertisement

European Journal of Nutrition

, Volume 56, Issue 8, pp 2611–2620 | Cite as

Iron bioavailability from supplemented formula milk: effect of lactoferrin addition

  • Sonia Fernández-Menéndez
  • María L. Fernández-Sánchez
  • Héctor González-Iglesias
  • Belén Fernández-Colomer
  • José López-Sastre
  • Alfredo Sanz-Medel
Original Contribution

Abstract

Purpose

In this work, the absorption and/or bioavailability of iron from two chemical species, 57Fe-Lf (apo-lactoferrin) complex and 57FeSO4 at low and high dose, and in Lf excess were investigated in lactating wistar rats.

Methods

The methodology used is based on the use of stable isotopes in combination with the approach “isotope pattern deconvolution” and ICP-MS for detection. This approach provides quantitative information about exogenous (57Fe) and endogenous iron (natFe) distribution in fluids and tissues in the iron-supplemented rat groups.

Results

The observed results with supplemented rats were compared with those found in rats receiving maternal feeding. Interestingly, differences were found between groups in iron for transport and storage compartments, but not in the functional one, depending upon the dose of iron administered and the chemical species.

Conclusion

Considering the results obtained, supplementation with iron salts in excess of Lf appears to be the best way of iron supplementation of formula milk.

Keywords

IPD ICP-MS Lf Iron supplementation Enriched stable isotopes Lactating rats Apparent absorption retention Endogenous exogenous iron Body tissues fluids 

Notes

Acknowledgments

M. L. F. S. and A. S. M. designed research; S. F. M. conducted research; B. F. C., J. L. S, H. G. I. and S. F. M. analysed data; S. F. M., M. L. F. S. and A. S. M. wrote the paper. All authors have read and approved the final manuscript. On behalf of all authors, the corresponding author states that there is no conflict of interest. Authors are grateful to “Fundación para la Investigación Científica Aplicada y la Tecnología, Principado de Asturias” (FICYT. FC-11-PC10-46) and to “Fondo Europeo de Desarrollo Regional” (FEDER). Also financial support from “Laboratorios Ordesa” (Barcelona, Spain) and “Fundación Grupo Castrillo” (Spain) is gratefully acknowledged.

Supplementary material

394_2016_1325_MOESM1_ESM.docx (89 kb)
Supplementary material 1 (DOCX 88 kb)
394_2016_1325_MOESM2_ESM.docx (92 kb)
Supplementary material 2 (DOCX 91 kb)
394_2016_1325_MOESM3_ESM.doc (60 kb)
Supplementary material 3 (DOC 60 kb)
394_2016_1325_MOESM4_ESM.doc (83 kb)
Supplementary material 4 (DOC 83 kb)
394_2016_1325_MOESM5_ESM.doc (61 kb)
Supplementary material 5 (DOC 61 kb)

References

  1. 1.
    McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B (2009) Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. Public Health Nutr 12(4):444–454. doi: 10.1017/S1368980008002401 PubMedGoogle Scholar
  2. 2.
    Gisbert JP, Gomollón F (2009) An update on iron physiology. World J Gastroenterol 15:4617–4626Google Scholar
  3. 3.
    Mertz W, Underwood EJ (1986) Trace elements in human and animal nutrition. Academic Press Inc., Nueva York (EEUU). ISBN 0-1249-1252-4Google Scholar
  4. 4.
    Moy RJD (2000) Iron fortification of infant formula. Nutr Res Rev 13:215–227. doi: 10.1079/095442200108729070 PubMedGoogle Scholar
  5. 5.
    Brätter P, Blasco IN, Negretti de Brätter VE, Raab A (1998) Speciation as an analytical aid in trace element research in infant nutrition. Analyst 123:821–826PubMedGoogle Scholar
  6. 6.
    Fernández-Sánchez ML, de la Flor St. Remy R, González-Iglesias H, López-Sastre JB, Fernández-Colomer B, Pérez-Solís D, Sanz-Medel A (2012) Iron content and its speciation in human milk from mothers of preterm and full-term infants at early stages of lactation: a comparison with commercial infant milk formulas. Microchem J 105:108–114. doi: 10.1016/j.microc.2012.03.016 Google Scholar
  7. 7.
    Davidsson L, Kastenmayer P, Yuen M, Lonnerdal B, Huirrell RF (1994) Influence of lactoferrin on iron absorption from human milk in infants. Pediatr Res 35:117–124PubMedGoogle Scholar
  8. 8.
    Brock JH (1980) Lactoferrin in human milk: its role in iron absorption and protection against enteric infection in the newborn infant. Arch Dis Child 55:417–421PubMedPubMedCentralGoogle Scholar
  9. 9.
    Lönnerdal B, Bryant A (2006) Absorption of iron from recombinant human lactoferrin in young US women. Am J Clin Nutr 83:305–309PubMedGoogle Scholar
  10. 10.
    García-Alonso JI, Rodriguez-González P (2013) Isotope dilution mass spectrometry. The Royal Society of Chemistry Publishing, London. ISBN 978-1-84973-333-5Google Scholar
  11. 11.
    González-Iglesias H, Fernández-Sánchez ML, López-Sastre JB, Sanz-Medel A (2012) Nutritional iron supplementation studies based on enriched 57Fe, added to milk in rats, and isotope pattern deconvolution-ICP-MS analysis. Electrophoresis 33:2407–2415. doi: 10.1002/elps.201100334 PubMedGoogle Scholar
  12. 12.
    Feng M, Van der Does L, Bantjes A (1995) Preparation of apolactoferrin with a very low iron saturation. J Dairy Sci 78:2352–2357PubMedGoogle Scholar
  13. 13.
    Messerschmidt A, Huber R, Poulos T, Wieghardt K (2011) Handbook of metalloproteins, vol 2. Wiley, New York. ISBN 9780000000298Google Scholar
  14. 14.
    Yamauchi K, Toida T, Nishimura S, Nagano E, Kusuoka O, Teraguchi S, Hayasawa H, Shimamura S, Tomita T (2000) 13-week oral repeated administration toxicity study of bovine lactoferrin in rats. Food Chem Toxicol 38:503–512PubMedGoogle Scholar
  15. 15.
    Codex Stand, Standard for Infant Formula and Formulas for Special Medical Purposes Intended for Infants (1981; Amendment 2011) Ref. 72-1981. Food and Agriculture Organization of the United Nations, World Health Organization. http://www.codexalimentarius.org/standards/list-of-standards/en/?provide=standards&orderField=fullReference&sort=asc&num1=CODEX (visited on 14th December 2015)
  16. 16.
    Frazer DM, Wilkins SJ, Anderson GJ (2007) Elevated iron absorption in the neonatal rat reflects high expression of iron transport genes in the distal alimentary tract. Am J Physiol Gastrointest Liver Physiol 293:525–531Google Scholar
  17. 17.
    Domellöf M, Lönnerdal B, Abrams SA, Hernell O (2002) Iron absorption in breast-fed infants: effects of age, iron status, iron supplements, and complementary foods. Am J Clin Nutr 76:198–204PubMedGoogle Scholar
  18. 18.
    Lee HB, Balaufox MD (1985) Blood volume in the rat. J Nucl Med 26:72–76PubMedGoogle Scholar
  19. 19.
    Scott BJ, Bradwell AR (1983) Identification of the serum binding proteins for iron, zinc, cadmium, nickel, and calcium. Clin Chem 29:629–633PubMedGoogle Scholar
  20. 20.
    Gürsel FE, Ates A, Bilal T, Altiner A (2012) Effect of dietary garcinia cambogia extract on serum essential minerals (calcium, phosphorus, magnesium and trace elements (iron, copper, zinc) in rats fed with high-lipid diet. Biol Trace Elem Res 148:378–382. doi: 10.1007/s12011-012-9385-x PubMedGoogle Scholar
  21. 21.
    Crichton RR, Charloteaux-Wauters MC (1987) Iron transport and storage. Eur J Biochem 164:485–506PubMedGoogle Scholar
  22. 22.
    Takahashi S, Takahashi I, Sato H, Kubota Y, Yoshida S, Muramatsu Y (2000) Determination of major and trace elements in the liver of Wistar rats by inductively coupled plasma-atomic emission spectrometry and mass spectrometry. Lab Anim 34:97–105PubMedGoogle Scholar
  23. 23.
    Sherman AR, Tissue NT (1981) Tissue iron, copper and zinc levels in offspring of iron-sufficient and iron-deficient rats. J Nutr 111:266–275PubMedGoogle Scholar
  24. 24.
    Konz T, Montes-Bayón M, Bettmer J, Sanz-Medel A (2011) Analysis of hepcidin, a key peptide for Fe homeostasis, via sulfur detection by capillary liquid chromatography-inductively coupled plasma mass spectrometry. J Anal At Spectrom 26:334–340. doi: 10.1039/C0JA00053A Google Scholar
  25. 25.
    Liu Y, Templeton DM (2015) Iron-dependent turnover of IRP-1/c-acotinase in kidney cells. Metallomics 7:766–775PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sonia Fernández-Menéndez
    • 1
  • María L. Fernández-Sánchez
    • 1
  • Héctor González-Iglesias
    • 2
  • Belén Fernández-Colomer
    • 3
  • José López-Sastre
    • 3
  • Alfredo Sanz-Medel
    • 1
  1. 1.Department of Physical and Analytical Chemistry, Faculty of ChemistryUniversity of OviedoOviedoSpain
  2. 2.“Fundación de Investigación Oftalmológica”Instituto Oftalmológico Fernández-VegaOviedoSpain
  3. 3.Service of Neonatology“Hospital Central de Asturias”OviedoSpain

Personalised recommendations