Advertisement

Zeitschrift für Rheumatologie

, Volume 78, Issue 3, pp 221–227 | Cite as

Kardiovaskuläre Komorbiditäten bei rheumatoider Arthritis

  • K. KrügerEmail author
  • H. Nüßlein
Leitthema

Zusammenfassung

Etwa 80 % der Patienten mit rheumatoider Arthritis (RA) leiden an Begleiterkrankungen, darunter mehr als die Hälfte an kardiovaskulären Komorbiditäten. Entzündungsaktivität ist dabei das Bindeglied zwischen RA, Arteriosklerose und koronarer Herzerkrankung, Schlaganfällen, thrombembolischen Komplikationen und Herzinsuffizienz – sämtliche dieser kardiovaskulären Manifestationen kommen bei RA-Patienten rund doppelt so häufig wie in der Normalbevölkerung vor und stellen eine häufige Todesursache dar. Neben Entzündungsaktivität, die durch optimale Behandlung und Einstellung der Grunderkrankung reduziert oder sogar eliminiert werden kann, erhöhen traditionelle kardiovaskuläre Risikofaktoren das Risiko. Auch diese sind bei RA-Patienten gehäuft, bleiben aber wegen defizitärer Erfassung oft lange unerkannt und unbehandelt. Könnte dieses Defizit verringert werden, würde sich das auch auf die Lebenserwartung des Rheumatikers positiv auswirken: So wurde durch Behandlung einer relevanten Hyperlipoproteinämie die Mortalität reduziert. Auch Antirheumatika nehmen auf das kardiovaskuläre Risiko Einfluss: NSAR (nichtsteroidale Antiphlogistika) und Glukokortikoide erhöhen bei Langzeitanwendung dosisabhängig das Risiko, durch Hydroxychloroquin, Methotrexat und Biologika wird es deutlich verringert. Da hausärztlich das erhöhte kardiovaskuläre Risiko durch entzündlich rheumatische Erkrankungen wenig bekannt ist, sollte zumindest das Screening auf Risikofaktoren beim internistischen Rheumatologen erfolgen. In einer eigenen Studie konnten wir zeigen, dass Screening standardisiert ohne großen Zeitaufwand durch die rheumatologische Fachassistentin durchgeführt werden kann und damit trotz Zeitmangels in der Rheumapraxis machbar ist. Weitere Studien liefern zusätzliche Ansätze zur einfachen Risikoerfassung. Diese sollte je nach individuellem Risiko alle 1 bis 5 Jahre erfolgen.

Schlüsselwörter

Arteriosklerose Schlaganfall Thrombembolische Komplikationen Herzinsuffizienz Entzündung 

Cardiovascular comorbidities in rheumatoid arthritis

Abstract

Approximately 80% of patients with rheumatoid arthritis (RA) suffer from comorbidities including more than 50% from cardiovascular (CV) diseases. Inflammatory activity is the main factor connecting RA with atherosclerosis, coronary heart disease, stroke, thromboembolic events and heart failure. Altogether these affect RA patients twice as frequently as the general population and CV events are the major cause of death in RA. Besides inflammatory activity, which can be reduced or eliminated by optimal treatment and controlling the RA activity, traditional CV risk factors also contribute to the total CV risk. These risk factors, such as hypertension, diabetes and hyperlipidemia can also be found more frequently in RA patients but often remain undetected and untreated for a long time. Reducing this deficit means improvement of the life expectancy for RA patients, which has been demonstrated in studies by treatment of hyperlipoproteinemia. Among the drugs used for RA treatment non-steroidal antirheumatic drugs and glucocorticoids increase the CV risk if used in the long term. Hydroxychloroquine, methotrexate and biologics on the other hand are able to dramatically reduce the risk. Elevated CV risks of inflammatory rheumatic diseases are widely unknown in primary care. Therefore, the rheumatologist should be responsible for assessment of risk factors but in real life motivation to do so is relatively low. Some studies could demonstrate that using nursing-based standardized assessment is an excellent opportunity to reduce these deficits. Depending on the individual risk reassessment should take place every 1–5 years.

Keywords

Atherosclerosis Stroke Thromboembolic complications Heart failure Inflammation 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

K. Krüger hat Honorare für Fortbildung/Beratung von folgenden Firmen erhalten: AbbVie, BMS, Biogen, Hexal, Lilly, Medac, MSD, Novartis, Pfizer, Roche, UCB. H. Nüßlein hat Honorare für Beratung und Vorträge von AbbVie, BMS, Lilly, MSD, Novartis, Pfizer, Roche, UCB erhalten.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Deutsches Rheumaforschungszentrum (2016) Kerndokumentation. Deutsches Rheumaforschungszentrum, Berlin (Daten noch unpubliziert)Google Scholar
  2. 2.
    England BR, Sayles H, Michaud K et al (2016) Cause-specific mortality in male US veterans with rheumatoid arthritis. Arthritis Care Res 68:36–45CrossRefGoogle Scholar
  3. 3.
    Mackey RH, Kuller LH, Moreland LW (2018) Update on cardiovascular disease risk in patients with rheumatic diseases. Rheum Dis Clin North Am 44:475–487CrossRefGoogle Scholar
  4. 4.
    Skeoch S, Bruce IN (2015) Atherosclerosis in rheumatoid arthritis: is it all about inflammation? Nat Rev Rheumatol 11:390–400CrossRefGoogle Scholar
  5. 5.
    Ridker PM (2016) From C‑reactive protein to interleukin-6 to interleukin-1: moving upstream to identify novel targets for atheroprotection. Circ Res 118:145–156CrossRefGoogle Scholar
  6. 6.
    Maradit-Kremers H, Crowson CS, Nicola PJ et al (2005) Increased unrecognized coronary heart disease and sudden deaths in rheumatoid arthritis. Arthritis Rheum 2005(52):402–411CrossRefGoogle Scholar
  7. 7.
    Karpouzas GA, Malpeso J, Choi TY et al (2014) Prevalence, extent and composition of coronary plaque in patients with rheumatoid arthritis without symptoms or prior diagnosis of coronary artery disease. Ann Rheum Dis 73:1797–1804CrossRefGoogle Scholar
  8. 8.
    Holmqvist ME, Wedren S, Jacobsson LTH et al (2010) Rapid increase in myocardial infarction risk following diagnosis of rheumatoid arthritis amongst patients diagnosed between 1995 and 2006. J Intern Med 268:578–585CrossRefGoogle Scholar
  9. 9.
    Crowson CS, Rollefstad S, Ikdahl E et al (2018) Impact of risk factors associated with cardiovascular outcomes in patients with rheumatoid arthritis. Ann Rheum Dis 77:48–54CrossRefGoogle Scholar
  10. 10.
    Arts EEA, Fransen J, Den Broeder AA et al (2017) Low disease activity (DAS28≤3.2) reduces the risk of first cardiovascular event in rheumatoid arthritis: a time-dependent Cox regression analysis in a large cohort study. Ann Rheum Dis 76:1693–1699CrossRefGoogle Scholar
  11. 11.
    Solomon DH, Reed GW, Kremer JM et al (2015) Disease activity in rheumatoid arthritis and the risk of cardiovascular events. Arthritis Rheum 67:1449–1455CrossRefGoogle Scholar
  12. 12.
    Chung CP, Giles JT, Petri M et al (2012) Prevalence of traditional modifiable cardiovascular risk factors in patients with rheumatoid arthritis: comparison with control subjects from the multi-ethnic study of atherosclerosis. Semin Arthritis Rheum 41:535–544CrossRefGoogle Scholar
  13. 13.
    Primdahl J, Clausen J, Hørslev-Petersen K (2013) Results from systematic screening for cardiovascular risk in outpatients with rheumatoid arthritis in accordance with the EULAR recommendations. Ann Rheum Dis 72:1771–1776CrossRefGoogle Scholar
  14. 14.
    Schmidt TJ, Avina-Zubieta JA, Sayre EC et al (2018) Quality of care for cardiovascular disease prevention in rheumatoid arthritis: compliance with hyperlipidemia screening guidelines. Baillieres Clin Rheumatol 57:1789–1794Google Scholar
  15. 15.
    Schmidt TJ, Avina-Zubieta JA, Sayre EC et al (2018) Cardiovascular disease prevention in rheumatoid arthritis: compliance with diabetes screening guidelines. J Rheumatol 45:1367–1374CrossRefGoogle Scholar
  16. 16.
    Van den Oever IAM, Heslinga M, Griep EN et al (2017) Cardiovascular risk management in rheumatoid arthritis patients still suboptimal: the implementation of cardiovascular risk management in rheumatoid arthritis project. Baillieres Clin Rheumatol 56:1472–1478Google Scholar
  17. 17.
    An JJ, Alemao E, Reynolds K et al (2016) Cardiovascular outcomes associated with lowering low-density lipoprotein cholesterol in rheumatoid arthritis and matched nonrheumatoid arthritis. J Rheumatol 43:1989–1996CrossRefGoogle Scholar
  18. 18.
    Huang CY, Lin TT, Yang YH et al (2018) Effect of statin therapy on the prevention of new-onset acute coronary syndrome in patients with rheumatoid arthritis. Int J Cardiol 253:1–6CrossRefGoogle Scholar
  19. 19.
    Krüger K (2018) Medikamentöse Therapie der rheumatoiden Arthritis und ihrer Komorbiditäten. Internist 59:341–351CrossRefGoogle Scholar
  20. 20.
    Wilson JC, Sarsour K, Gale S et al (2018) Incidence and risk of glucocorticoid-associated adverse effects in patients with rheumatoid arthritis. Arthritis Care Res.  https://doi.org/10.1002/acr.23611 CrossRefGoogle Scholar
  21. 21.
    Roubille C, Richter V, Starnino T et al (2015) The effects of tumour necrosis factor inhibitors,methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann Rheum Dis 74:480–489CrossRefGoogle Scholar
  22. 22.
    Micha R, Imamura F, Wyler von Ballmoos M et al (2011) Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease. Am J Cardiol 108:1362–1370CrossRefGoogle Scholar
  23. 23.
    Rempenault C, Combe B, Barnetche T et al (2018) Metabolic and cardiovascular benefits of hydroxychloroquine in patients with rheumatoid arthritis: a systematic review and meta-analysis. Ann Rheum Dis 77:98–103CrossRefGoogle Scholar
  24. 24.
    Low ASL, Symmons DPM, Lunt M et al (2017) Relationship between exposure to tumour necrosis factor inhibitor therapy and incidence and severity of myocardial infarction in patients with rheumatoid arthritis. Ann Rheum Dis 76:654–660CrossRefGoogle Scholar
  25. 25.
    Lee JL, Sinnathurai P, Buchbinder R et al (2018) Biologics and cardiovascular events in inflammatory arthritis: a prospective national cohort study. Arthritis Res Ther 20:171CrossRefGoogle Scholar
  26. 26.
    Kang EH, Jin Y, Brill G et al (2018) Comparative cardiovascular risk of abatacept and tumor necrosis factor inhibitors in patients with rheumatoid arthritis with and without diabetes mellitus: a Multidatabase cohort study. J Am Heart Assoc 7:e7393.  https://doi.org/10.1161/JAHA.117.007393 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kim SC, Solomon DH, Rogers JR et al (2018) No difference in cardiovascular risk of tocilizumab versus abatacept for rheumatoid arthritis: a multi-database cohort study. Semin Arthritis Rheum.  https://doi.org/10.1016/j.semarthrit.2018.03.012 CrossRefPubMedGoogle Scholar
  28. 28.
    Wiseman SJ, Ralston SH, Wardlaw JM (2016) Cerebrovascular disease in rheumatic diseases. A systematic review and meta-analysis. Stroke 47:943–950CrossRefGoogle Scholar
  29. 29.
    Tiosano S, Yavne Y, Gendelman O et al (2017) Stroke among rheumatoid arthritis patients: does age matter? A real-life study. Neuroepidemiology 49:99–105CrossRefGoogle Scholar
  30. 30.
    Meissner Y, Richter A, Manger B et al (2017) Serious adverse events and the risk of stroke in patients with rheumatoid arthritis: results from the German RABBIT cohort. Ann Rheum Dis 76:1583–1590CrossRefGoogle Scholar
  31. 31.
    Chen YR, Hsieh FI, Lien LM et al (2018) Rheumatoid arthritis significantly increased recurrence risk after ischemic stroke/transient ischemic attack. J Neurol 265:1810–1818CrossRefGoogle Scholar
  32. 32.
    Scott IC, Hider SL, Scott DL (2018) Thromboembolism with Janus Kinase (JAK) Inhibitors for Rheumatoid Arthritis: How Real is the Risk? Drug Saf 41:645–653CrossRefGoogle Scholar
  33. 33.
    Van den Oever IAM, Sattar N, Nurmohamed MT (2014) Thromboembolic and cardiovascular risk in rheumatoid arthritis: role of the haemostatic system. Ann Rheum Dis 73:954–957CrossRefGoogle Scholar
  34. 34.
    Ungprasert P, Srivali N, Wijarnpreecha K et al (2015) Non-steroidal anti-inflammatory drugs and risk of venous thromboembolism: a systematic review and meta-analysis. Rheumatology 54:736–742CrossRefGoogle Scholar
  35. 35.
    Davies R, Galloway JB, Watson KD et al (2011) Venous thrombotic events are not increased in patients with rheumatoid arthritis treated with anti-TNF therapy: results from the British Society for Rheumatology Biologics Register. Ann Rheum Dis 70:1831–1834CrossRefGoogle Scholar
  36. 36.
    Verden A, Dimbil M, Kyle R et al (2018) Analysis of spontaneous postmarket case reports submitted to the FDA regarding thromboembolic adverse events and JAK inhibitors. Drug Saf 41:357–361CrossRefGoogle Scholar
  37. 37.
    Nicola PJ, Maradit-Kremers H, Roger VL et al (2005) The risk of congestive heart failure in rheumatoid arthritis. A population-based study over 46 years. Arthritis Rheum 52:412–420CrossRefGoogle Scholar
  38. 38.
    Schau T, Gottwald M, Arbach O et al (2015) Increased prevalence of diastolic heart failure in patients with rheumatoid arthritis correlates with active disease, but not with treatment type. J Rheumatol 42:2029–2037CrossRefGoogle Scholar
  39. 39.
    Chung ES, Packer M, Lo KH et al (2003) Randomized, double-blind, placebo-controlled, pilot trial of Infliximab, a chimeric Monoclonal antibody to tumor necrosis factor-alpha in patients with moderate-to-severe heart failure. Circulation 107:3133–3140CrossRefGoogle Scholar
  40. 40.
    Listing J, Strangfeld A, Kekow J et al (2008) Does tumor necrosis factor alpha- inhibition promote or prevent heart failure in patients with rheumatoid arthritis? Arthritis Rheum 58:667–677CrossRefGoogle Scholar
  41. 41.
    Baniaamam M, Paulus WJ, Blanken AB, Nurmohamed MT (2018) The effect of biological DMARDs on the risk of congestive heart failure in rheumatoid arthritis: a systematic review. Expert Opin Biol Ther 18:585–594CrossRefGoogle Scholar
  42. 42.
    Krüger K, Eder R, Mueller C, Rietzler K (2018) Assessing the risk of RA patients for comorbid conditions through a structured nurse-led interview – the ERIKO study. Ann Rheum Dis.  https://doi.org/10.1136/annrheumdis-2018-eular.1268 CrossRefGoogle Scholar
  43. 43.
    Agca R, Heslinga SC, Rollestad S et al (2017) EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis 76:17–28CrossRefGoogle Scholar
  44. 44.
    Breunig M, Kleinert S, Lehmann S et al (2018) Simple screening tools predict death and cardiovascular events in patients with rheumatic disease. Scand J Rheumatol 47:102–109CrossRefGoogle Scholar
  45. 45.
    Karpouzas GA, Estis J, Rezaeian P et al (2018) High-sensitivitycardiac troponin I is a biomarker for occult coronary plaque burden and cardiovascular events in patients with rheumatoid arthritis. Rheumatology 57:1080–1088CrossRefGoogle Scholar
  46. 46.
    Fent GJ, Greenwood JP, Plein S, Buch MH (2017) The role of non-invasive cardiovascular imaging in the assessment of cardiovascular risk in rheumatoid arthritis: where we are and where we need to be. Ann Rheum Dis 76:1169–1175CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Rheumatologisches PraxiszentrumMünchenDeutschland
  2. 2.Gemeinschaftspraxis für RheumatologieNürnbergDeutschland

Personalised recommendations