Advertisement

Carpal tunnel syndrome and spinal canal stenosis: harbingers of transthyretin amyloid cardiomyopathy?

  • Fabian aus dem SiepenEmail author
  • Selina Hein
  • Sofie Prestel
  • Christian Baumgärtner
  • Stefan Schönland
  • Ute Hegenbart
  • Christoph Röcken
  • Hugo A. Katus
  • Arnt V. Kristen
Original Paper

Abstract

Background

Carpal tunnel syndrome (CTS) and spinal canal stenosis can be frequently observed in the medical history of patients with transthyretin amyloidosis (ATTR), both in the hereditary (mt-ATTR) and wild-type (wt-ATTR) form. The aim of this retrospective single-center analysis was to determine the prevalence of these findings, delay to diagnosis of systemic amyloidosis and the prognostic value in a large cohort of patients with wt-ATTR and mt-ATTR amyloidosis.

Methods

Medical records of 253 patients diagnosed with wt-ATTR, 136 patients with mt-ATTR and 77 asymptomatic gene carriers were screened for history of CTS and spinal canal stenosis and laboratory analysis, electrocardiography and echocardiographic results, respectively. Clinical follow-up was performed by phone assessment.

Results

History of CTS was present in 77 patients (56%) with mt-ATTR, in 152 patients (60%) with wt-ATTR and even in 10 of the asymptomatic gene carriers (13%). Latency between carpal tunnel surgery and first diagnosis of systemic amyloidosis was significantly longer in wt-ATTR compared to mt-ATTR (117 ± 179 months vs. 66 ± 73 months; p = 0.02). In total, 36 patients (14%) with wt-ATTR and 7 patients (5%) with mt-ATTR had a history of clinically significant spinal canal stenosis. In the subgroup of mt-ATTR, patients with CTS had thicker IVS (19 ± 5 mm vs. 16 ± 5 mm, p < 0.05), higher LV mass index (225 ± 78 g vs. 193 ± 98 g, p < 0.05), lower Karnofsky index (78 ± 15% vs. 83 ± 17%, p < 0.05), and lower mitral annular plane systolic excursion (MAPSE; 9 ± 4 mm vs. 11 ± 5 mm, p < 0.05) compared to patients without CTS, whereas in wt-ATTR no significant differences could be observed. No significant difference in survival was observed between patients with and without CTS (wt-ATTR: 67 vs. 63 months, p = 0.45; mt-ATTR: 74 vs. 63 months, p = 0.60). A combination of CTS and spinal stenosis was present in 32 wt-ATTR patients (12%) and 3 mt-ATTR patients (2.2%).

Conclusions

The prevalence of CTS is high and the latency between CTS surgery and diagnosis of amyloidosis is long among patients with wt-ATTR and mt-ATTR. CTS might be predictive for future occurrence of systemic (predominantly cardiac) ATTR amyloidosis.

Keywords

Amyloidosis Carpal tunnel syndrome Spinal canal stenosis Heart failure 

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Atroshi I, Gummesson C, Johnsson R, Ornstein E, Ranstam J, Rosen I (1999) Prevalence of carpal tunnel syndrome in a general population. JAMA 282:153–158CrossRefGoogle Scholar
  2. 2.
    Bickel KD (2010) Carpal tunnel syndrome. J Hand Surg Am 35:147–152CrossRefGoogle Scholar
  3. 3.
    Gioeva Z, Urban P, Meliss RR, Haag J, Axmann HD, Siebert F, Becker K, Radtke HG, Rocken C (2013) ATTR amyloid in the carpal tunnel ligament is frequently of wildtype transthyretin origin. Amyloid 20:1–6CrossRefGoogle Scholar
  4. 4.
    De Villiers PD, Booysen EL (1976) Fibrous spinal stenosis. A report on 850 myelograms with a water-soluble contrast medium. Clin Orthop Relat Res. 115:140–144Google Scholar
  5. 5.
    Roberson GH, Llewellyn HJ, Taveras JM (1973) The narrow lumbar spinal canal syndrome. Radiology 107:89–97CrossRefGoogle Scholar
  6. 6.
    Fanuele JC, Birkmeyer NJ, Abdu WA, Tosteson TD, Weinstein JN (2000) The impact of spinal problems on the health status of patients: have we underestimated the effect? Spine (Phila Pa 1976) 25:1509–1514CrossRefGoogle Scholar
  7. 7.
    Sueyoshi T, Ueda M, Jono H, Irie H, Sei A, Ide J, Ando Y, Mizuta H (2011) Wild-type transthyretin-derived amyloidosis in various ligaments and tendons. Hum Pathol 42:1259–1264CrossRefGoogle Scholar
  8. 8.
    Sueyoshi T, Ueda M, Sei A, Misumi Y, Oshima T, Yamashita T, Obayashi K, Shinriki S, Jono H, Shono M, Ando Y, Mizuta H (2011) Spinal multifocal amyloidosis derived from wild-type transthyretin. Amyloid 18:165–168CrossRefGoogle Scholar
  9. 9.
    Sekijima Y, Uchiyama S, Tojo K, Sano K, Shimizu Y, Imaeda T, Hoshii Y, Kato H, Ikeda S (2011) High prevalence of wild-type transthyretin deposition in patients with idiopathic carpal tunnel syndrome: a common cause of carpal tunnel syndrome in the elderly. Hum Pathol 42:1785–1791CrossRefGoogle Scholar
  10. 10.
    Takanashi T, Matsuda M, Yazaki M, Yamazaki H, Nawata M, Katagiri Y, Ikeda S (2013) Synovial deposition of wild-type transthyretin-derived amyloid in knee joint osteoarthritis patients. Amyloid 20:151–155CrossRefGoogle Scholar
  11. 11.
    Yanagisawa A, Ueda M, Sueyoshi T, Okada T, Fujimoto T, Ogi Y, Kitagawa K, Tasaki M, Misumi Y, Oshima T, Jono H, Obayashi K, Hirakawa K, Uchida H, Westermark P, Ando Y, Mizuta H (2015) Amyloid deposits derived from transthyretin in the ligamentum flavum as related to lumbar spinal canal stenosis. Mod Pathol 28:201–207CrossRefGoogle Scholar
  12. 12.
    Westermark P, Westermark GT, Suhr OB, Berg S (2014) Transthyretin-derived amyloidosis: probably a common cause of lumbar spinal stenosis. Ups J Med Sci 119:223–228CrossRefGoogle Scholar
  13. 13.
    Nakagawa M, Sekijima Y, Yazaki M, Tojo K, Yoshinaga T, Doden T, Koyama J, Yanagisawa S, Ikeda S (2016) Carpal tunnel syndrome: a common initial symptom of systemic wild-type ATTR (ATTRwt) amyloidosis. Amyloid 23:58–63CrossRefGoogle Scholar
  14. 14.
    Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, Wechalekar AD, Berk JL, Quarta CC, Grogan M, Lachmann HJ, Bokhari S, Castano A, Dorbala S, Johnson GB, Glaudemans AW, Rezk T, Fontana M, Palladini G, Milani P, Guidalotti PL, Flatman K, Lane T, Vonberg FW, Whelan CJ, Moon JC, Ruberg FL, Miller EJ, Hutt DF, Hazenberg BP, Rapezzi C, Hawkins PN (2016) Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 133:2404–2412CrossRefGoogle Scholar
  15. 15.
    Fernandez Fuertes J, Rodriguez Vicente O, Sanchez Herraez S, Ramos Pascua LR. Early diagnosis of systemic amyloidosis by means of a transverse carpal ligament biopsy carried out during carpal tunnel syndrome surgery. Med Clin (Barc). 2017Google Scholar
  16. 16.
    Connors LH, Prokaeva T, Lim A, Theberge R, Falk RH, Doros G, Berg A, Costello CE, O’Hara C, Seldin DC, Skinner M (2009) Cardiac amyloidosis in African Americans: comparison of clinical and laboratory features of transthyretin V122I amyloidosis and immunoglobulin light chain amyloidosis. Am Heart J 158:607–614CrossRefGoogle Scholar
  17. 17.
    Jacobson DR, Pastore R, Pool S, Malendowicz S, Kane I, Shivji A, Embury SH, Ballas SK, Buxbaum JN (1996) Revised transthyretin Ile 122 allele frequency in African-Americans. Hum Genet 98:236–238CrossRefGoogle Scholar
  18. 18.
    Bauer R, Dikow N, Brauer A, Kreuter M, Buss S, Evers C, Rocken C, Schnabel PA, Hinderhofer K, Ehlermann P, Katus HA, Kristen AV (2014) The “Wagshurst study”: p.Val40Ile transthyretin gene variant causes late-onset cardiomyopathy. Amyloid 21:267–275CrossRefGoogle Scholar
  19. 19.
    Givens RC, Russo C, Green P, Maurer MS (2013) Comparison of cardiac amyloidosis due to wild-type and V122I transthyretin in older adults referred to an academic medical center. Aging Health 9:229–235CrossRefGoogle Scholar
  20. 20.
    Coelho T, Maurer MS, Suhr OB (2013) THAOS—The transthyretin amyloidosis outcomes survey: initial report on clinical manifestations in patients with hereditary and wild-type transthyretin amyloidosis. Curr Med Res Opin 29:63–76CrossRefGoogle Scholar
  21. 21.
    Quarta CC, Solomon SD, Uraizee I, Kruger J, Longhi S, Ferlito M, Gagliardi C, Milandri A, Rapezzi C, Falk RH (2014) Left ventricular structure and function in transthyretin-related versus light-chain cardiac amyloidosis. Circulation 129:1840–1849CrossRefGoogle Scholar
  22. 22.
    Dungu JN, Valencia O, Pinney JH, Gibbs SD, Rowczenio D, Gilbertson JA, Lachmann HJ, Wechalekar A, Gillmore JD, Whelan CJ, Hawkins PN, Anderson LJ (2014) CMR-based differentiation of AL and ATTR cardiac amyloidosis. JACC Cardiovasc Imaging 7:133–142CrossRefGoogle Scholar
  23. 23.
    Pinney JH, Whelan CJ, Petrie A, Dungu J, Banypersad SM, Sattianayagam P, Wechalekar A, Gibbs SD, Venner CP, Wassef N, McCarthy CA, Gilbertson JA, Rowczenio D, Hawkins PN, Gillmore JD, Lachmann HJ (2013) Senile systemic amyloidosis: clinical features at presentation and outcome. J Am Heart Assoc 2:e000098CrossRefGoogle Scholar
  24. 24.
    Ruberg FL, Maurer MS, Judge DP, Zeldenrust S, Skinner M, Kim AY, Falk RH, Cheung KN, Patel AR, Pano A, Packman J, Grogan DR (2012) Prospective evaluation of the morbidity and mortality of wild-type and V122I mutant transthyretin amyloid cardiomyopathy: the Transthyretin Amyloidosis Cardiac Study (TRACS). Am Heart J 164:222–228 e1CrossRefGoogle Scholar
  25. 25.
    Miller SR, Sekijima Y, Kelly JW (2004) Native state stabilization by NSAIDs inhibits transthyretin amyloidogenesis from the most common familial disease variants. Lab Invest 84:545–552CrossRefGoogle Scholar
  26. 26.
    Tojo K, Sekijima Y, Kelly JW, Ikeda S (2006) Diflunisal stabilizes familial amyloid polyneuropathy-associated transthyretin variant tetramers in serum against dissociation required for amyloidogenesis. Neurosci Res 56:441–449CrossRefGoogle Scholar
  27. 27.
    Ferreira N, Cardoso I, Domingues MR, Vitorino R, Bastos M, Bai G, Saraiva MJ, Almeida MR (2009) Binding of epigallocatechin-3-gallate to transthyretin modulates its amyloidogenicity. FEBS Lett 583:3569–3576CrossRefGoogle Scholar
  28. 28.
    Ferreira N, Saraiva MJ, Almeida MR (2012) Epigallocatechin-3-gallate as a potential therapeutic drug for TTR-related amyloidosis: “in vivo” evidence from FAP mice models. PloS One 7:e29933CrossRefGoogle Scholar
  29. 29.
    aus dem Siepen F, Bauer R, Aurich M, Buss SJ, Steen H, Altland K, Katus HA, Kristen AV (2015) Green tea extract as a treatment for patients with wild-type transthyretin amyloidosis: an observational study. Drug Des Dev Ther 9:6319–6325CrossRefGoogle Scholar
  30. 30.
    Kristen AV, Lehrke S, Buss S, Mereles D, Steen H, Ehlermann P, Hardt S, Giannitsis E, Schreiner R, Haberkorn U, Schnabel PA, Linke RP, Rocken C, Wanker EE, Dengler TJ, Altland K, Katus HA (2012) Green tea halts progression of cardiac transthyretin amyloidosis: an observational report. Clinical research in cardiology: official journal of the German Cardiac Society 101:805–813CrossRefGoogle Scholar
  31. 31.
    Mereles D, Buss SJ, Hardt SE, Hunstein W, Katus HA (2010) Effects of the main green tea polyphenol epigallocatechin-3-gallate on cardiac involvement in patients with AL amyloidosis. Clinical research in cardiology: official journal of the German Cardiac Society 99:483–490CrossRefGoogle Scholar
  32. 32.
    Cardoso I, Saraiva MJ (2006) Doxycycline disrupts transthyretin amyloid: evidence from studies in a FAP transgenic mice model. FASEB J 20:234–239CrossRefGoogle Scholar
  33. 33.
    Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M, Kristen AV, Grogan M, Witteles R, Damy T, Drachman BM, Shah SJ, Hanna M, Judge DP, Barsdorf AI, Huber P, Patterson TA, Riley S, Schumacher J, Stewart M, Sultan MB (2018) Rapezzi C and Investigators A-AS. Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy. The New England journal of medicine 379:1007–1016CrossRefGoogle Scholar
  34. 34.
    Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, Plante-Bordeneuve V, Barroso FA, Merlini G, Obici L, Scheinberg M, Brannagan TH, Litchy WJ, Whelan C, Drachman BM, Adams D, Heitner SB, Conceicao I, Schmidt HH, Vita G, Campistol JM, Gamez J, Gorevic PD, Gane E, Shah AM, Solomon SD, Monia BP, Hughes SG, Kwoh TJ, McEvoy BW, Jung SW, Baker BF, Ackermann EJ (2018) Gertz MA and Coelho T. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. The New England journal of medicine 379:22–31CrossRefGoogle Scholar
  35. 35.
    Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV, Tournev I, Schmidt HH, Coelho T, Berk JL, Lin KP, Vita G, Attarian S, Plante-Bordeneuve V, Mezei MM, Campistol JM, Buades J, Brannagan TH, Kim BJ, Oh J, Parman Y, Sekijima Y, Hawkins PN, Solomon SD, Polydefkis M, Dyck PJ, Gandhi PJ, Goyal S, Chen J, Strahs AL, Nochur SV, Sweetser MT, Garg PP, Vaishnaw AK, Gollob JA, Suhr OB (2018) Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. The New England journal of medicine 379:11–21CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fabian aus dem Siepen
    • 1
    Email author
  • Selina Hein
    • 1
  • Sofie Prestel
    • 1
  • Christian Baumgärtner
    • 1
  • Stefan Schönland
    • 2
  • Ute Hegenbart
    • 2
  • Christoph Röcken
    • 3
  • Hugo A. Katus
    • 1
    • 4
  • Arnt V. Kristen
    • 1
  1. 1.Department of Cardiology, Angiology and Respiratory Medicine, Amyloidosis CenterUniversity Hospital HeidelbergHeidelbergGermany
  2. 2.Department of Hematology and Oncology, Amyloidosis CenterUniversity Hospital HeidelbergHeidelbergGermany
  3. 3.Institute of PathologyChristian-Albrechts-University KielKielGermany
  4. 4.Partner Site Heidelberg/Mannheim, DZHK (German Center for Cardiovascular Research)University of HeidelbergHeidelbergGermany

Personalised recommendations