Clinical Research in Cardiology

, Volume 108, Issue 11, pp 1240–1248 | Cite as

Angiotensin-converting-enzyme inhibitors in hemodynamic congestion: a meta-analysis of early studies

  • Alexander JobsEmail author
  • Amr Abdin
  • Suzanne de Waha-Thiele
  • Ingo Eitel
  • Holger Thiele
  • Cor de Wit
  • Reinhard Vonthein
Original Paper



Major clinical trials have shown that angiotensin-converting enzyme (ACE) inhibitors reduce mortality and morbidity in congestive heart failure (HF). Prior to these seminal findings hemodynamic effects of ACE inhibitors were examined in small studies. We aimed to review these studies systematically and meta-analyze the effects of ACE inhibitors on hemodynamics in HF.

Methods and results

We identified studies investigating the acute hemodynamic effect of ACE inhibitors in naïve patients with congestive heart failure by searching PubMed and the Cochrane Central Register of Controlled Trials. We extracted the changes in hemodynamic measures and their standard errors from study reports or calculated these values from baseline and post-medication measurements. Data were pooled using random effects models. In total, 41 studies with 46 independent cohorts consisting of 676 patients were included. ACE inhibitor treatment reduced pulmonary capillary wedge pressure by 7.3 (95% confidence interval 6.4–8.2) mmHg and right atrial pressure by 3.7 (95% confidence interval 1.3–6.1) mmHg in patients with HF. Cardiac index increased by 0.4 (95% confidence interval 0.2–0.6) ml/min/m2. Changes in hemodynamic measures were strongly connected to each other in weighted simple linear regression models.


Angiotensin-converting enzyme-inhibitors acutely reduced cardiac filling pressures and increased cardiac output in patients with congestive heart failure who were naïve for these drugs. These data indicate that ACE inhibitors exhibit a strong decongesting effect in congestive heart failure. In light of their impact on long-term prognosis, ACE inhibitors should also be considered as decongesting drugs in stable patients.


Heart failure Congestion Hemodynamics Angiotensin-converting-enzyme inhibitors 



Angiotensin-converting enzyme


Cardiac index


Heart failure


Individual patient data


Mean arterial pressure


Pulmonary capillary wedge pressure


Renin–angiotensin–aldosterone system


Right atrial pressure


Systemic vascular resistance



Universitätsklinikum Schleswig–Holstein, Universität zu Lübeck, and Herzzentrum Leipzig.

Compliance with ethical standards

Conflict of interest

No conflict of interest.

Supplementary material

392_2019_1456_MOESM1_ESM.docx (2.7 mb)
Supplementary material 1 (DOCX 2736 KB)


  1. 1.
    Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18:891–975CrossRefGoogle Scholar
  2. 2.
    Gheorghiade M, Follath F, Ponikowski P et al (2010) Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur J Heart Fail 12:423–433CrossRefGoogle Scholar
  3. 3.
    Gotzmann M, Hauptmann S, Hogeweg M et al (2019) Hemodynamics of paradoxical severe aortic stenosis: insight from a pressure-volume loop analysis. Clin Res Cardiol. CrossRefPubMedGoogle Scholar
  4. 4.
    Miller WL (2016) Fluid volume overload and congestion in heart failure: time to reconsider pathophysiology and how volume is assessed. Circ Heart Fail 9:e002922CrossRefGoogle Scholar
  5. 5.
    Hartupee J, Mann DL (2017) Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol 14:30–38CrossRefGoogle Scholar
  6. 6.
    Kobayashi M, Rossignol P, Ferreira JP et al (2018) Prognostic value of estimated plasma volume in acute heart failure in three cohort studies. Clin Res Cardiol. CrossRefPubMedGoogle Scholar
  7. 7.
    Ondetti MA, Rubin B, Cushman DW (1977) Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science 196:441–444CrossRefGoogle Scholar
  8. 8.
    Lipkin DP, Poole-Wilson PA (1985) Treatment of chronic heart failure: a review of recent drug trials. Br Med J (Clin Res Ed 291:993–996CrossRefGoogle Scholar
  9. 9.
    Group CTS (1987) Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 316:1429–1435CrossRefGoogle Scholar
  10. 10.
    Packer M (1992) The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol 20:248–254CrossRefGoogle Scholar
  11. 11.
    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097CrossRefGoogle Scholar
  12. 12.
    Chatterjee K, Rouleau JL, Parmley WW (1982) Haemodynamic and myocardial metabolic effects of captopril in chronic heart failure. Br Heart J 47:233–238CrossRefGoogle Scholar
  13. 13.
    Nigri A, Mangieri E, Martuscelli E et al (1989) Hemodynamic and clinical effects of captopril in patients with severe congestive heart failure. Cardiologia 34:525–529PubMedGoogle Scholar
  14. 14.
    Stevenson LW, Tillisch JH (1986) Maintenance of cardiac output with normal filling pressures in patients with dilated heart failure. Circulation 74:1303–1308CrossRefGoogle Scholar
  15. 15.
    Fallick C, Sobotka PA, Dunlap ME (2011) Sympathetically mediated changes in capacitance: redistribution of the venous reservoir as a cause of decompensation. Circ Heart Fail 4:669–675CrossRefGoogle Scholar
  16. 16.
    Investigators S, Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN (1991) Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 325:293–302CrossRefGoogle Scholar
  17. 17.
    Investigators S, Yusuf S, Pitt B, Davis CE, Hood WB Jr, Cohn JN (1992) Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 327:685–691CrossRefGoogle Scholar
  18. 18.
    Publication Committee for the VI (2002) Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. JAMA 287:1531–1540Google Scholar
  19. 19.
    Mitrovic V, Seferovic PM, Simeunovic D et al (2006) Haemodynamic and clinical effects of ularitide in decompensated heart failure. Eur Heart J 27:2823–2832CrossRefGoogle Scholar
  20. 20.
    Teerlink JR, Metra M, Felker GM et al (2009) Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding phase IIb study. Lancet 373:1429–1439CrossRefGoogle Scholar
  21. 21.
    Ponikowski P, Mitrovic V, Ruda M et al (2014) A randomized, double-blind, placebo-controlled, multicentre study to assess haemodynamic effects of serelaxin in patients with acute heart failure. Eur Heart J 35:431–441CrossRefGoogle Scholar
  22. 22.
    O’Connor CM, Starling RC, Hernandez AF et al (2011) Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med 365:32–43CrossRefGoogle Scholar
  23. 23.
    Packer M, O’Connor C, McMurray JJV et al (2017) Effect of Ularitide on Cardiovascular Mortality in Acute Heart Failure. N Engl J Med 376:1956–1964CrossRefGoogle Scholar
  24. 24.
    (2017) Novartis provides update on phase III study of RLX030 (serelaxin) in patients with acute heart failure. Press release of Novartis, Cambridge. Accessed 1 Oct 2018
  25. 25.
    Zile MR, Bennett TD, St John Sutton M et al (2008) Transition from chronic compensated to acute decompensated heart failure: pathophysiological insights obtained from continuous monitoring of intracardiac pressures. Circulation 118:1433–1441CrossRefGoogle Scholar
  26. 26.
    IntHout J, Ioannidis JP, Borm GF, Goeman JJ (2015) Small studies are more heterogeneous than large ones: a meta-meta-analysis. J Clin Epidemiol 68:860–869CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alexander Jobs
    • 1
    • 2
    • 3
    Email author
  • Amr Abdin
    • 4
  • Suzanne de Waha-Thiele
    • 1
    • 2
  • Ingo Eitel
    • 1
    • 2
  • Holger Thiele
    • 3
  • Cor de Wit
    • 2
    • 5
  • Reinhard Vonthein
    • 6
  1. 1.Medizinische Klinik II/Kardiologie, Angiologie, IntensivmedizinUniversitätsklinikum Schleswig-HolsteinLübeckGermany
  2. 2.German Center for Cardiovascular Research (DZHK)LübeckGermany
  3. 3.Klinik für Innere Medizin/KardiologieHerzzentrum Leipzig-UniversitätsklinikLeipzigGermany
  4. 4.Medizinische Klinik I/Kardiologie, Angiologie und internistische IntensivmedizinRWTH AachenAachenGermany
  5. 5.Institut für PhysiologieUniversität zu LübeckLübeckGermany
  6. 6.Institut für Medizinische Biometrie und Statistik, ZKS LübeckUniversität zu LübeckLübeckGermany

Personalised recommendations