Advertisement

Transcatheter aortic valve replacement for pure aortic valve regurgitation: “on-label” versus “off-label” use of TAVR devices

  • Bernhard Wernly
  • Sarah Eder
  • Eliano P. Navarese
  • Daniel Kretzschmar
  • Marcus Franz
  • Brunilda Alushi
  • Frederik Beckhoff
  • Christian Jung
  • Michael Lichtenauer
  • Christian Datz
  • Paul Christian Schulze
  • Ulf Landmesser
  • Uta C. Hoppe
  • Volkmar Falk
  • Alexander LautenEmail author
Original Paper
  • 17 Downloads

Abstract

Introduction

Transcatheter aortic valve replacement (TAVR) has become the mainstay of treatment for aortic stenosis in patients with high surgical risk. Pure aortic regurgitation (PAR) is considered a relative contraindication for TAVR; however, TAVR is increasingly performed in PAR patients with unfavorable risk profile. Herein, we aim to summarize available data on TAVR for PAR with special emphasis on “on-label” versus “off-label” TAVR devices.

Methods and results

Pubmed was searched for studies of patients undergoing TAVR for PAR. Primary outcome was 30 day-mortality. Pooled estimated event rates were calculated. Twelve studies including a total of 640 patients were identified until December 2017. Among these, 208 (33%) patients were treated with devices with CE-mark approval for PAR (“on-label”; JenaValve and J valve). Overall, the procedural success rate was 89.9% (95% CI 81.1–96.1%; I2 80%). Major bleeding was reported in 6.4% (95% CI 2.9–10.8%; I2 48%). All-cause mortality at 30 days was 10.4% (95% CI 7.1–14.2%; I2 20%). Stroke occurred in 2.2% (95% CI 0.9–3.9%; I2 0%). A permanent pacemaker was required in 10.7% (95% CI 7.3–14.6%; I2 23%). At 30 days after TAVR, ≥ moderate AR post-interventional was observed in 11.5% (95% CI 2.9–23.6%; I2 90%). In the “on-label”-group, success rate was 93.0% (95% CI 85.9–98.1%; I2 52%). 30-day-mortality was 9.1% (95% CI 3.7–16.0%; I2 36%). More than trace AR was present in 2.8% (95% CI 0.1–7.6%; I2 0%). Compared to first-generation devices, second-generation devices were associated with significantly lower 30-day-mortality (r = − 0.10; p = 0.02), and significantly higher procedural success rates (r = 0.28; p < 0.001). Compared to other second-generation devices, the use of J valve or JenaValve was not associated with altered mortality (r = 0.04; p = 0.50), rates of > trace residual AR (r = − 0.05; p = 0.65) but with a significantly higher procedural success (r = 0.15; p = 0.042).

Conclusion

Based on this summary of available observational data TAVR for PAR is feasible and safe in patients deemed inoperable. First-generation TAVR devices are associated with inferior outcome and should be avoided. The “on-label” use of PAR-certified TAVR devices is associated with a significantly higher procedural success rate and might be favorable compared to other second-generation devices.

Keywords

TAVR TAVI Aortic insufficiency Aortic regurgitation Transcatheter aortic valve replacement Transcatheter aortic valve implantation 

Notes

Funding

None.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

392_2019_1422_MOESM1_ESM.doc (57 kb)
Suppl Fig. 1 PRISMA Flow chart (DOC 57 KB)

References

  1. 1.
    Smith CR, Leon MB, Mack MJ et al (2011) Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med 364:2187–2198CrossRefGoogle Scholar
  2. 2.
    Adams DH, Popma JJ, Reardon MJ (2014) Transcatheter aortic-valve replacement with a self-expanding prosthesis. N Engl J Med 371:967–968CrossRefGoogle Scholar
  3. 3.
    Barbanti M, Buccheri S, Rodes-Cabau J et al (2017) Transcatheter aortic valve replacement with new-generation devices: a systematic review and meta-analysis. Int J Cardiol 245:83–89CrossRefGoogle Scholar
  4. 4.
    Gaede L, Kim WK, Liebetrau C et al (2018) Pacemaker implantation after TAVI: predictors of AV block persistence. Clin Res Cardiol 107:60–69CrossRefGoogle Scholar
  5. 5.
    Buckert D, Cieslik M, Tibi R et al (2018) Longitudinal strain assessed by cardiac magnetic resonance correlates to hemodynamic findings in patients with severe aortic stenosis and predicts positive remodeling after transcatheter aortic valve replacement. Clin Res Cardiol 107:20–29CrossRefGoogle Scholar
  6. 6.
    Bleiziffer S, Bosmans J, Brecker S et al (2017) Insights on mid-term TAVR performance: 3-year clinical and echocardiographic results from the CoreValve ADVANCE study. Clin Res Cardiol 106:784–795CrossRefGoogle Scholar
  7. 7.
    Abdelghani M, Cavalcante R, Miyazaki Y et al (2017) Prevalence, predictors, and prognostic implications of residual impairment of functional capacity after transcatheter aortic valve implantation. Clin Res Cardiol 106:752–759CrossRefGoogle Scholar
  8. 8.
    Frerker C, Bestehorn K, Schluter M et al (2017) In-hospital mortality in propensity-score matched low-risk patients undergoing routine isolated surgical or transfemoral transcatheter aortic valve replacement in 2014 in Germany. Clin Res Cardiol 106:610–617CrossRefGoogle Scholar
  9. 9.
    Mollmann H, Bestehorn K, Bestehorn M et al (2016) In-hospital outcome of transcatheter vs. surgical aortic valve replacement in patients with aortic valve stenosis: complete dataset of patients treated in 2013 in Germany. Clin Res Cardiol 105:553–559CrossRefGoogle Scholar
  10. 10.
    Schymik G, Tzamalis P, Herzberger V et al (2017) Transcatheter aortic valve implantation in patients with a reduced left ventricular ejection fraction: a single-centre experience in 2000 patients (TAVIK Registry). Clin Res Cardiol 106:1018–1025CrossRefGoogle Scholar
  11. 11.
    Gaede L, Blumenstein J, Kim WK et al (2017) Trends in aortic valve replacement in Germany in 2015: transcatheter versus isolated surgical aortic valve repair. Clin Res Cardiol 106:411–419CrossRefGoogle Scholar
  12. 12.
    Abdul-Jawad Altisent O, Ferreira-Gonzalez I, Marsal JR et al (2016) Neurological damage after transcatheter aortic valve implantation compared with surgical aortic valve replacement in intermediate risk patients. Clin Res Cardiol 105:508–517CrossRefGoogle Scholar
  13. 13.
    Frangieh AH, Klos M, Michel J, Schunkert H, Kasel AM (2017) First in man… and wife: transcatheter aortic valve implantation for an octogenarian diamond couple performed on the same day. Clin Res Cardiol 106:386–387CrossRefGoogle Scholar
  14. 14.
    Magne J, Mohty D, Piccardo A et al (2017) Impact of pulmonary hypertension on outcome in patients with severe aortic stenosis and preserved left ventricular ejection fraction. Clin Res Cardiol 106:542–550CrossRefGoogle Scholar
  15. 15.
    Vahanian A, Alfieri O, Andreotti F et al (2012) Guidelines on the management of valvular heart disease (version 2012): the Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur J Cardiothorac Surg 42:S1–S44CrossRefGoogle Scholar
  16. 16.
    Doenst T, Essa Y, Jacoub K et al (2017) Cardiac surgery 2016 reviewed. Clin Res Cardiol 106:851–867CrossRefGoogle Scholar
  17. 17.
    Iung B, Baron G, Butchart EG et al (2003) A prospective survey of patients with valvular heart disease in Europe: the Euro Heart Survey on Valvular Heart Disease. Eur Heart J 24:1231–1243CrossRefGoogle Scholar
  18. 18.
    Kim WK, Blumenstein J, Liebetrau C et al (2017) Comparison of outcomes using balloon-expandable versus self-expanding transcatheter prostheses according to the extent of aortic valve calcification. Clin Res Cardiol 106:995–1004CrossRefGoogle Scholar
  19. 19.
    Hira RS, Vemulapalli S, Li Z et al (2017) Trends and outcomes of off-label use of transcatheter aortic valve replacement: insights from the NCDR STS/ACC TVT registry. JAMA Cardiol 2:846–854CrossRefGoogle Scholar
  20. 20.
    Lardizabal JA, Macon CJ, O’Neill BP et al (2014) Clinical outcomes with on-label and off-label use of the transcatheter heart valve in the United States. Catheter Cardiovasc Interv 84:124–128CrossRefGoogle Scholar
  21. 21.
    Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 283:2008–2012CrossRefGoogle Scholar
  22. 22.
    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151:264–269 (W64) CrossRefGoogle Scholar
  23. 23.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188CrossRefGoogle Scholar
  24. 24.
    Wallace BC, Dahabreh IJ, Trikalinos TA, Lau J, Trow P, Schmid CH (2012) Closing the gap between methodologists and end-users: R as a computational back-end. J Stat Softw 49(5):1–15CrossRefGoogle Scholar
  25. 25.
    Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36:48CrossRefGoogle Scholar
  26. 26.
    Frerker C, Schewel J, Schewel D et al (2015) Expansion of the indication of transcatheter aortic valve implantation–feasibility and outcome in “off-label” patients compared with “on-label” patients. J Invasive Cardiol 27:229–236Google Scholar
  27. 27.
    Testa L, Latib A, Rossi ML et al (2014) CoreValve implantation for severe aortic regurgitation: a multicentre registry. EuroIntervention 10:739–745CrossRefGoogle Scholar
  28. 28.
    Roy DA, Schaefer U, Guetta V et al (2013) Transcatheter aortic valve implantation for pure severe native aortic valve regurgitation. J Am Coll Cardiol 61:1577–1584CrossRefGoogle Scholar
  29. 29.
    Yoon SH, Schmidt T, Bleiziffer S et al (2017) Transcatheter aortic valve replacement in pure native aortic valve regurgitation. J Am Coll Cardiol 70:2752–2763CrossRefGoogle Scholar
  30. 30.
    Sawaya FJ, Deutsch MA, Seiffert M et al (2017) Safety and efficacy of transcatheter aortic valve replacement in the treatment of pure aortic regurgitation in native valves and failing surgical bioprostheses: results from an international registry study. JACC Cardiovasc Interv 10:1048–1056CrossRefGoogle Scholar
  31. 31.
    Schofer J, Nietlispach F, Bijuklic K et al (2015) Transfemoral implantation of a fully repositionable and retrievable transcatheter valve for noncalcified pure aortic regurgitation. JACC Cardiovasc Interv 8:1842–1849CrossRefGoogle Scholar
  32. 32.
    Wendt D, Kahlert P, Pasa S et al (2014) Transapical transcatheter aortic valve for severe aortic regurgitation: expanding the limits. JACC Cardiovasc Interv 7:1159–1167CrossRefGoogle Scholar
  33. 33.
    Schlingloff F, Schafer U, Frerker C, Schmoeckel M, Bader R (2014) Transcatheter aortic valve implantation of a second-generation valve for pure aortic regurgitation: procedural outcome, haemodynamic data and follow-up. Interact Cardiovasc Thorac Surg 19:388–393CrossRefGoogle Scholar
  34. 34.
    Seiffert M, Bader R, Kappert U et al (2014) Initial German experience with transapical implantation of a second-generation transcatheter heart valve for the treatment of aortic regurgitation. JACC Cardiovasc Interv 7:1168–1174CrossRefGoogle Scholar
  35. 35.
    Silaschi M, Conradi L, Wendler O et al (2017) The JUPITER registry: 1-year outcomes of transapical aortic valve implantation using a second generation transcatheter heart valve for aortic regurgitation. Catheter Cardiovasc Interv 91(7):1345-1351.  https://doi.org/10.1002/ccd.27370 CrossRefGoogle Scholar
  36. 36.
    Zhu D, Chen Y, Guo Y et al (2015) Transapical transcatheter aortic valve implantation using a new second-generation TAVI system—J valve for high-risk patients with aortic valve diseases: initial results with 90-day follow-up. Int J Cardiol 199:155–162CrossRefGoogle Scholar
  37. 37.
    Wei L, Liu H, Zhu L et al (2015) A New transcatheter aortic valve replacement system for predominant aortic regurgitation implantation of the J valve and early outcome. JACC Cardiovasc Interv 8:1831–1841CrossRefGoogle Scholar
  38. 38.
    Baumgartner H, Falk V, Bax JJ et al (2017) 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J 38:2739–2791CrossRefGoogle Scholar
  39. 39.
    Franzone A, Piccolo R, Siontis GC et al (2016) Transcatheter aortic valve replacement for the treatment of pure native aortic valve regurgitation: a systematic review. JACC Cardiovasc Interv 9:2308–2317CrossRefGoogle Scholar
  40. 40.
    Zhu L, Guo Y, Wang W et al (2017) Transapical transcatheter aortic valve replacement with a novel transcatheter aortic valve replacement system in high-risk patients with severe aortic valve diseases. J Thorac Cardiovasc Surg 155:588–597CrossRefGoogle Scholar
  41. 41.
    Leon MB, Smith CR, Mack M et al (2010) Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 363:1597–1607CrossRefGoogle Scholar
  42. 42.
    Ak A, Porokhovnikov I, Kuethe F, Schulze PC, Noutsias M, Schlattmann P (2017) Transcatheter vs. surgical aortic valve replacement and medical treatment: systematic review and meta-analysis of randomized and non-randomized trials. Herz 43:325–337CrossRefGoogle Scholar
  43. 43.
    Mihara H, Shibayama K, Berdejo J et al (2015) Impact of device landing zone calcification on paravalvular regurgitation after transcatheter aortic valve replacement: a real-time three-dimensional transesophageal echocardiographic study. J Am Soc Echocardiogr 28:404–414CrossRefGoogle Scholar
  44. 44.
    Zhu L, Guo Y, Wang W et al (2018) Transapical transcatheter aortic valve replacement with a novel transcatheter aortic valve replacement system in high-risk patients with severe aortic valve diseases. J Thorac Cardiovasc Surg 155:588–597CrossRefGoogle Scholar
  45. 45.
    Biancari F, Rosato S, D’Errigo P et al (2016) Immediate and intermediate outcome after transapical versus transfemoral transcatheter aortic valve replacement. Am J Cardiol 117:245–251CrossRefGoogle Scholar
  46. 46.
    Schafer U, Schirmer J, Niklas S, Harmel E, Deuschl F, Conradi L (2017) First-in-human implantation of a novel transfemoral selfexpanding transcatheter heart valve to treat pure aortic regurgitation. EuroIntervention 13:1296–1299CrossRefGoogle Scholar
  47. 47.
    Bekeredjian R, Grayburn PA (2005) Valvular heart disease: aortic regurgitation. Circulation 112:125–134CrossRefGoogle Scholar
  48. 48.
    Gummert JF, Funkat A, Beckmann A et al (2010) Cardiac surgery in Germany during 2009. A report on behalf of the German Society for Thoracic and Cardiovascular Surgery. Thorac Cardiovasc Surg 58:379–386CrossRefGoogle Scholar
  49. 49.
    Lancellotti P, Tribouilloy C, Hagendorff A et al (2010) European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 1: aortic and pulmonary regurgitation (native valve disease). Eur J Echocardiogr 11:223–244CrossRefGoogle Scholar
  50. 50.
    Joint Task Force on the Management of Valvular Heart Disease of the European Society of C, European Association for Cardio-Thoracic S, Vahanian A et al (2012) Guidelines on the management of valvular heart disease (version 2012). Eur Heart J 33:2451–2496CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bernhard Wernly
    • 1
  • Sarah Eder
    • 2
  • Eliano P. Navarese
    • 3
    • 4
    • 5
  • Daniel Kretzschmar
    • 6
  • Marcus Franz
    • 6
  • Brunilda Alushi
    • 7
    • 8
  • Frederik Beckhoff
    • 7
    • 8
  • Christian Jung
    • 9
  • Michael Lichtenauer
    • 1
  • Christian Datz
    • 2
  • Paul Christian Schulze
    • 6
  • Ulf Landmesser
    • 7
    • 8
    • 10
  • Uta C. Hoppe
    • 1
  • Volkmar Falk
    • 11
    • 12
    • 13
  • Alexander Lauten
    • 7
    • 8
    Email author
  1. 1.Department of Cardiology, Clinic of Internal Medicine IIParacelsus Medical University of SalzburgSalzburgAustria
  2. 2.Department of Internal Medicine, Hospital OberndorfTeaching Hospital of Paracelsus Medical University SalzburgOberndorfAustria
  3. 3.Interventional Cardiology and Cardiovascular Medicine Research, Inova Center for Thrombosis Research and Drug DevelopmentInova Heart and Vascular InstituteFalls ChurchUSA
  4. 4.SIRIO MEDICINE Network, Evidence-Based SectionFalls ChurchUSA
  5. 5.Cardiovascular InstituteLudwik Rydygier Collegium Medicum, Nicolaus Copernicus UniversityBydgoszczPoland
  6. 6.Department of Cardiology, Clinic of Internal Medicine IUniversitaetsherzzentrum Thüringen, Friedrich Schiller University JenaJenaGermany
  7. 7.Department of CardiologyUniversity Heart Center Berlin and Charité University Medicine Berlin, Campus Benjamin-FranklinBerlinGermany
  8. 8.German Center for Cardiovascular Research (DZHK), Site BerlinBerlinGermany
  9. 9.Division of Cardiology, Pulmonology, and Vascular Medicine, Medical FacultyUniversity DuesseldorfDüsseldorfGermany
  10. 10.Berlin Institute of Health (BIH)BerlinGermany
  11. 11.Department of Cardiovascular SurgeryCharite BerlinBerlinGermany
  12. 12.Department of Cardiothoracic and Vascular SurgeryGerman Heart Center BerlinBerlinGermany
  13. 13.Department of Health Sciences and TechnologyETH ZürichZurichSwitzerland

Personalised recommendations