Impacts of non-recovery of trastuzumab-induced cardiomyopathy on clinical outcomes in patients with breast cancer

  • Hyun Ju Yoon
  • Kye Hun KimEmail author
  • Hyung Yoon Kim
  • Hyukjin Park
  • Jae Yeong Cho
  • Young Joon Hong
  • Hyung Wook Park
  • Ju Han Kim
  • Youngkeun Ahn
  • Myung Ho Jeong
  • Jeong Gwan Cho
  • Jong Chun Park
Original Paper



The impacts of non-recovery of trastuzumab-induced left ventricular dysfunction (LVD) on clinical outcomes in breast cancer have been poorly studied. We investigated the predictors of LV-functional non-recovery and its impacts on clinical outcomes in breast cancer patients with trastuzumab-induced LVD.

Methods and results

A total of 243 patients with trastuzumab-induced LVD were divided into the recovered LVD group (n = 195) and non-recovered LVD group (n = 48). Major adverse clinical events (MACEs) including death, symptomatic heart failure (HF), and HF hospitalization (HHF) were compared. Hemoglobin and albumin levels were significantly lower in non-recovered LVD than in recovered LVD group. Non-recovered LVD group showed significantly larger LV end-diastolic and systolic dimension, higher pulmonary artery systolic pressure, lower LV ejection fraction (EF), and decreased global longitudinal strain than in recovered LVD group. Decreased LVEF, enlarged LV size, pulmonary hypertension, and anemia were independent predictors of LV-functional non-recovery. During 45.9 ± 23.5 months of follow-up, MACEs were developed in 32 patients: 15 deaths, 28 symptomatic HF, and 22 HHF. In Kaplan–Meier survival analysis, MACE free survival was significantly lower in non-recovered LVD group than in recovered LVD group (log rank p = 0.002).


LV-functional non-recovery was not uncommon in breast cancer patients with trastuzumab-induced cardiomyopathy, and non-recovered LVD was significantly associated with MACEs. Decreased LVEF, enlarged LV size, pulmonary hypertension, and anemia were independent predictors of LV-functional non-recovery. Careful monitoring for MACEs and intensive medical management should be considered in trastuzumab-induced cardiomyopathy with these characteristics.


Trastuzumab Cardiomyopathy Cardiotoxicity Recovery 


Author Contributions

Drafting: HJ Yoon and KH Kim. Statistical analysis: HJ Yoon, Data acquisition: HJ Yoon, HY Kim, HJ Park, and JY Cho. Analysis and interpretation of data: HJ Yoon, KH Kim, HW Park, YJ Hong, JH Kim, and Y Ahn. Supervision: MH Jeong, JG Cho, and JC Park.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Ethics approval

This study has been approved by our institutional review board (No. 2015-05-092).


  1. 1.
    Yeh ET, Bickford CL (2009) Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol 53:2231–2247CrossRefPubMedGoogle Scholar
  2. 2.
    Minami M, Matsumoto S, Horiuchi H (2010) Cardiovascular side-effects of modern cancer therapy. Circ J 74:1779–1786CrossRefPubMedGoogle Scholar
  3. 3.
    Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin. Cancer 97:2869–2879CrossRefPubMedGoogle Scholar
  4. 4.
    Smith I, Procter M, Gelber RD, Guillaume S, Feyereislova A, Dowsett M, Goldhirsch A, Untch M, Mariani G, Baselga J, Kaufmann M, Cameron D, Bell R, Bergh J, Coleman R, Wardley A, Harbeck N, Lopez RI, Mallmann P, Gelmon K, Wilcken N, Wist E, Sánchez Rovira P, Piccart-Gebhart MJ (2007) HERA study team. 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: A randomized controlled trial. Lancet 369:29–36CrossRefPubMedGoogle Scholar
  5. 5.
    Pegram M, Liao J (2012) Trastuzumab treatment in multiple lines: current data and future directions. Clin Breast Cancer 12:10–18CrossRefPubMedGoogle Scholar
  6. 6.
    Zeglinski M, Ludke A, Jassal DS, Singal PK (2011) Trastuzumabinduced cardiac dysfunction: a ‘dual-hit’. Exp Clin Cardiol 16:70–74PubMedGoogle Scholar
  7. 7.
    Albini A, Cesana E, Donatelli F, Cammarota R, Bucci EO, Baravelli M, Anzà C, Noonan DM (2011) Cardio-oncology in targeting the HER receptor family: the puzzle of different cardiotoxicities of HER2 inhibitors. Future Cardiol 7:93–704CrossRefGoogle Scholar
  8. 8.
    Keefe DL (2002) Trastuzumab-associated cardiotoxicity. Cancer 95:1592–1600CrossRefPubMedGoogle Scholar
  9. 9.
    Perez EA, Rodeheffer R (2004) Clinical cardiac tolerability of trastuzumab. J Clin Oncol 22:322–329CrossRefPubMedGoogle Scholar
  10. 10.
    Ewer SM, Ewer MS (2008) Cardiotoxicity profile of trastuzumab. Drug Saf 31:459–467CrossRefPubMedGoogle Scholar
  11. 11.
    Fiuza M (2009) Cardiotoxicity associated with trastuzumab treatment of HER2 + breast cancer. Adv Ther 26:S9–S17CrossRefPubMedGoogle Scholar
  12. 12.
    Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Eng J Med 344:783–792CrossRefGoogle Scholar
  13. 13.
    Bear H (2005) Primary chemotherapy for operable breast cancer: the NSABP experience. Breast Cancer Res 7:S17CrossRefGoogle Scholar
  14. 14.
    Bear HD, Anderson S, Brown A, Smith R, Mamounas EP, Fisher B, Margolese R, Theoret H, Soran A, Wickerham DL, Wolmark N (2003) The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol 21:4165–4174CrossRefPubMedGoogle Scholar
  15. 15.
    Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, Mackey J, Glaspy J, Chan A, Pawlicki M, Pinter T, Valero V, Liu MC, Sauter G, von Minckwitz G, Visco F, Bee V, Buyse M, Bendahmane B, Tabah-Fisch I, Lindsay MA, Riva A, Crown J, Breast Cancer International Research Group (2011) Adjuvant trastuzumab in HER2 positive breast cancer. N Engl J Med 365:1273–1283CrossRefPubMedGoogle Scholar
  16. 16.
    Joensuu H, Bono P, Kataja V, Alanko T, Kokko R, Asola R, Utriainen T, Turpeenniemi-Hujanen T, Jyrkkiö S, Möykkynen K, Helle L, Ingalsuo S, Pajunen M, Huusko M, Salminen T, Auvinen P, Leinonen H, Leinonen M, Isola J, Kellokumpu-Lehtinen PL (2009) Fluorouracil, epirubicin, and cyclophosphamide with either docetaxel or vinorelbine, with or without trastuzumab, as adjuvant treatments of breast cancer: final results of the FinHer Trial. J Clin Oncol 27:5685–5692CrossRefPubMedGoogle Scholar
  17. 17.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015;28:1–39CrossRefPubMedGoogle Scholar
  18. 18.
    Marwick TH, Leano RL, Brown J, Sun JP, Hoffmann R, Lysyansky P et al (2009) Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range. JACC Cardiovasc Imaging 2:80–84CrossRefPubMedGoogle Scholar
  19. 19.
    Martin M, Esteva FJ, Alba E, Khandheria B, Perez-Isla L, Garcia-Saenz JA, Márquez A, Sengupta P, Zamorano J (2009) Minimizing cardiotoxicity while optimizing treatment efficacy with trastuzumab: review and expert recommendations. Oncologist 14:1–11CrossRefPubMedGoogle Scholar
  20. 20.
    Cappellini MD, Motta I (2015) Anemia in clinical practice-definition and classification: does hemoglobin change with aging? Semin Hematol 52:261–269CrossRefPubMedGoogle Scholar
  21. 21.
    Onitilo AA, Engel JM, Stankowski RV (2014) Cardiovascular toxicity associated with adjuvant trastuzumab therapy: prevalence, patient characteristics, and risk factors. Ther Adv Drug Saf 5:154–166CrossRefPubMedGoogle Scholar
  22. 22.
    Erickson SL, O’Shea KS, Ghaboosi N, Loverro L, Frantz G, Bauer M, Lu LH, Moore MW (1997) ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2-and heregulin-deficient mice. Development 124:4999–5011PubMedGoogle Scholar
  23. 23.
    Riccio G, Coppola C, Piscopo G, Capasso I, Maurea C, Esposito E, De Lorenzo C, Maurea N (2016) Trastuzumab and target-therapy side effects: Is still valid to differentiate anthracycline Type I from Type II cardiomyopathies? Hum Vaccin Immunother 12:1124–1131CrossRefPubMedGoogle Scholar
  24. 24.
    Ohtani K, Fujino T, Ide T, Funakoshi K, Sakamoto I, Hiasa KI, Higo T, Kamezaki K, Akashi K, Tsutsui H (2018) Recovery from left ventricular dysfunction was associated with the early introduction of heart failure medical treatment in cancer patients with anthracycline-induced cardiotoxicity. Clin Res Cardiol (Epub ahead of print)Google Scholar
  25. 25.
    Bowles EJ, Wellman R, Feigelson HS, Onitilo AA, Freedman AN, Delate T, Allen LA, Nekhlyudov L, Goddard KA, Davis RL, Habel LA, Yood MU, McCarty C, Magid DJ, Wagner EH, Pharmacovigilance Study Team (2012) Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: a retrospective cohort study. J Natl Cancer Inst 104:1293–1305CrossRefPubMedGoogle Scholar
  26. 26.
    Chen J, Long JB, Hurria A, Owusu C, Steingart RM, Gross CP (2012) Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Coll Cardiol 60:2504–2512CrossRefPubMedGoogle Scholar
  27. 27.
    Yoon HJ, Kim KH, Kim JY, Park HJ, Cho JY, Hong YJ, Park HW, Kim JH, Ahn Y, Jeong MH, Cho JG, Park JC (2016) Chemotherapy-induced left ventricular dysfunction in patients with breast cancer. J Breast Cancer 19:402–409CrossRefPubMedGoogle Scholar
  28. 28.
    Szachniewicz J, Petruk-Kowalczyk J, Majda J, Kaczmarek A, Reczuch K, Kalra PR, Piepoli MF, Anker SD, Banasiak W, Ponikowski P (2003) Anemia is an independent predictor of pooroutcome in patients with chronic heart failure. Int J Cardiol 90:303–308CrossRefPubMedGoogle Scholar
  29. 29.
    Anand IS, Kuskowski MA, Rector TS, Florea VG, Glazer RD, Hester A, Chiang YT, Aknay N, Maggioni AP, Opasich C, Latini R, Cohn al (2005) Anemia and change in hemoglobin over time related to mortality and morbidity in patients with chronic heart failure: results from Val-HeFT. Circulation 112:1121–1127CrossRefPubMedGoogle Scholar
  30. 30.
    Kosiborod M, Smith GL, Radford MJ, Foody JM, Krumholz HM (2003) The prognostic importance of anaemia in patients with heart failure. Am J Med 114:112–119CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hyun Ju Yoon
    • 1
  • Kye Hun Kim
    • 1
    • 2
    Email author
  • Hyung Yoon Kim
    • 1
  • Hyukjin Park
    • 1
  • Jae Yeong Cho
    • 1
  • Young Joon Hong
    • 1
  • Hyung Wook Park
    • 1
  • Ju Han Kim
    • 1
  • Youngkeun Ahn
    • 1
  • Myung Ho Jeong
    • 1
  • Jeong Gwan Cho
    • 1
  • Jong Chun Park
    • 1
  1. 1.Department of Cardiovascular MedicineChonnam National University HospitalGwangjuSouth Korea
  2. 2.Echocardiography and Cardiovascular Imaging Laboratory, Heart Failure ClinicChonnam National University HospitalGwangjuSouth Korea

Personalised recommendations