Prognostic impact of chronic kidney disease and renal replacement therapy in ventricular tachyarrhythmias and aborted cardiac arrest

  • Kathrin Weidner
  • Michael BehnesEmail author
  • Tobias Schupp
  • Jonas Rusnak
  • Linda Reiser
  • Gabriel Taton
  • Thomas Reichelt
  • Dominik Ellguth
  • Niko Engelke
  • Armin Bollow
  • Ibrahim El-Battrawy
  • Uzair Ansari
  • Jorge Hoppner
  • Christoph A. Nienaber
  • Kambis Mashayekhi
  • Christel Weiß
  • Muharrem Akin
  • Martin Borggrefe
  • Ibrahim Akin
Original Paper



The study sought to assess the prognostic impact of chronic kidney disease (CKD) and renal replacement therapy (RRT) in patients with ventricular tachyarrhythmias and sudden cardiac arrest (SCA) on admission.


A large retrospective registry was used including all consecutive patients presenting with ventricular tachycardia (VT), fibrillation (VF) and SCA on admission from 2002 to 2016. Non-CKD vs. “CKD without RRT”, and “CKD without RRT” vs. “CKD with RRT” were compared applying multivariable Cox regression models and propensity-score matching for evaluation of the primary prognostic endpoint defined as long-term all-cause mortality at 2 years. Secondary prognostic endpoints were cardiac death at 24 h, in-hospital death at index and the composite endpoint of recurrent ventricular tachyarrhythmias, appropriate ICD therapies and cardiac death at 24 h.


In 2686 unmatched high-risk patients with ventricular tachyarrhythmias and SCA, non-CKD was present in 46%, “CKD without RRT” in 46% and “CKD with RRT” in 8%. Each, VT and VF occurred in about one-third of CKD patients. Multivariable Cox regression models revealed that “CKD without RRT” (HR = 2.118; p = 0.001) and “CKD with RRT” (HR = 3.043; p = 0.001) patients were associated with the primary endpoint of long-term mortality at 2 years, which was also proven after propensity-score matching (non-CKD vs. “CKD without RRT”: 43% vs. 27%, log rank p = 0.001; HR = 1.847; “CKD without RRT” vs. “CKD with RRT”: 74% vs. 51%, log rank p = 0.001; HR = 2.129). The rates of secondary endpoints were higher for cardiac death at 24 h, in-hospital death at index and the composite of recurrent ventricular tachyarrhythmias, appropriate ICD therapies and  cardiac death at 24 h, respectively, for “CKD without RRT” and “CKD with RRT” patients. 


In patients presenting with ventricular tachyarrhythmias and aborted SCA on admission, the presence of CKD, especially combined with RRT, is independently associated with an increase of long-term all-cause mortality at 2 years, cardiac death at 24 h, in-hospital death and the composite of recurrent ventricular tachyarrhythmias, appropriate ICD therapies and  cardiac death at 24 h.


Ventricular tachyarrhythmia Sudden cardiac arrest Chronic kidney disease Renal replacement therapy 


Compliance with ethical standards

Conflict of interest

The authors declare that they do not have any conflict of interest.


  1. 1.
    Green D, New RP, Kalra D (2011) Sudden cardiac death in hamodialysis patients—an in depth review Am J Kidney Dis 57:921–929 P.PubMedCrossRefGoogle Scholar
  2. 2.
    Singh TK, Arya V, Navaratnarajah N (2014) Chronic kidney disease and cardiovascular disease: a focus on primary care. Cardiovasc Hematol Disord Drug Targets 14(3):212–218PubMedCrossRefGoogle Scholar
  3. 3.
    Emrich IE et al (2018) Symmetric dimethylarginine (SDMA) outperforms asymmetric dimethylarginine (ADMA) and other methylarginines as predictor of renal and cardiovascular outcome in non-dialysis chronic kidney disease. Clin Res Cardiol 107(3):201–213PubMedCrossRefGoogle Scholar
  4. 4.
    Amann K (2008) Media calcification and intima calcification are distinct entities in chronic kidney disease. Clin J Am Soc Nephrol 3(6):1599–1605PubMedCrossRefGoogle Scholar
  5. 5.
    Olgaard K, Lewin E, Silver J (2011) Calcimimetics, vitamin D and ADVANCE in the management of CKD-MBD. Nephrol Dial Transpl 26(4):1117–1119CrossRefGoogle Scholar
  6. 6.
    Shivendra S (2014) Cardiovascular disease in chronic kidney disease. Nephrology (3):20–29Google Scholar
  7. 7.
    Ronco C (2011) The Cardiorenal syndrome: basis and common ground for a multidisciplinary patient-oriented therapy. Cardiorenal Med 1(1):3–4PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Haider AW et al (1998) Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J Am Coll Cardiol 32(5):1454–1459PubMedCrossRefGoogle Scholar
  9. 9.
    Ukena C et al (2016) Renal denervation for treatment of ventricular arrhythmias: data from an International Multicenter Registry. Clin Res Cardiol 105(10):873–879PubMedCrossRefGoogle Scholar
  10. 10.
    Rigopoulos AG et al (2016) Low occurrence of ventricular arrhythmias after alcohol septal ablation in high-risk patients with hypertrophic obstructive cardiomyopathy. Clin Res Cardiol 105(11):953–961PubMedCrossRefGoogle Scholar
  11. 11.
    Franczyk-Skora B et al (2015) Sudden cardiac death in CKD patients. Int Urol Nephrol 47(6):971–982PubMedCrossRefGoogle Scholar
  12. 12.
    Bleyer AJ et al (2006) Characteristics of sudden death in hemodialysis patients. Kidney Int 69(12):2268–2273PubMedCrossRefGoogle Scholar
  13. 13.
    Burghardt A et al (2018) Risk marker profiles in patients treated with percutaneous septal ablation for symptomatic hypertrophic obstructive cardiomyopathy. Clin Res Cardiol 107(6):479–486PubMedCrossRefGoogle Scholar
  14. 14.
    Sedaghat-Hamedani F et al (2018) Clinical outcomes associated with sarcomere mutations in hypertrophic cardiomyopathy: a meta-analysis on 7675 individuals. Clin Res Cardiol 107(1):30–41PubMedCrossRefGoogle Scholar
  15. 15.
    Frommeyer G et al (2016) Long-term follow-up of subcutaneous ICD systems in patients with hypertrophic cardiomyopathy: a single-center experience. Clin Res Cardiol 105(1):89–93PubMedCrossRefGoogle Scholar
  16. 16.
    Chan CT et al (2010) Determinants of cardiac autonomic dysfunction in ESRD. Clin J Am Soc Nephrol 5(10):1821–1827PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hayashi M, Shimizu W, Albert CM (2015) The spectrum of epidemiology underlying sudden cardiac death. Circ Res 116(12):1887–1906PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Yousuf O et al (2015) Clinical management and prevention of sudden cardiac death. Circ Res 116(12):2020–2040PubMedCrossRefGoogle Scholar
  19. 19.
    Priori SG et al (2016) 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology. G Ital Cardiol (Rome) 17(2):108–170Google Scholar
  20. 20.
    Marx N et al (2018) Mechanisms of cardiovascular complications in chronic kidney disease: research focus of the Transregional Research Consortium SFB TRR219 of the University Hospital Aachen (RWTH) and the Saarland University. Clin Res Cardiol 107(Suppl 2):120–126PubMedCrossRefGoogle Scholar
  21. 21.
    Stahli BE et al (2017) Outcomes of patients with periprocedural atrial fibrillation undergoing percutaneous coronary intervention for chronic total occlusion. Clin Res Cardiol 106(12):986–994PubMedCrossRefGoogle Scholar
  22. 22.
    Coiro S et al (2017) Association of digitalis treatment with outcomes following myocardial infarction in patients with heart failure or evidence of left ventricular dysfunction: an analysis from the high-risk myocardial infarction database initiative. Clin Res Cardiol 106(9):722–733PubMedCrossRefGoogle Scholar
  23. 23.
    Zannad F, Rossignol P, Cardiovascular outcome trials in patients with advanced kidney disease time for action. Circulation 2017. 135:1769–1771CrossRefGoogle Scholar
  24. 24.
    Zannad F, Rossignol P (2017) Cardiovascular outcome trials in patients with advanced kidney disease: time for action. Circulation 135(19):1769–1771PubMedCrossRefGoogle Scholar
  25. 25.
    National Kidney F (2015) KDOQI clinical practice guideline for hemodialysis adequacy: 2015 update. Am J Kidney Dis 66(5):884–930CrossRefGoogle Scholar
  26. 26.
    Priori SG et al (2015) ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J 2015. 36(41):2793–2867PubMedCrossRefGoogle Scholar
  27. 27.
    Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 76(113):S1–S130Google Scholar
  28. 28.
    Andrassy KM (2013) Comments on ‘KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease’. Kidney Int 84(3):622–623PubMedCrossRefGoogle Scholar
  29. 29.
    Ferdinand D, Otto M, Weiss C (2016) Get the most from your data: a propensity score model comparison on real-life data. Int J Gen Med 9:123–131PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Austin PC (2011) An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res 46(3):399–424PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Shastri S et al (2012) Predictors of sudden cardiac death: a competing risk approach in the hemodialysis study. Clin J Am Soc Nephrol 7(1):123–130PubMedCrossRefGoogle Scholar
  32. 32.
    Baigent C et al (2011) The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377(9784):2181–2192PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sherif KA et al (2014) Cardiac repolarization abnormalities among patients with various stages of chronic kidney disease. Clin Cardiol 37(7):417–421PubMedCrossRefGoogle Scholar
  34. 34.
    Dinshaw L et al (2018) The T-peak-to-T-end interval: a novel ECG marker for ventricular arrhythmia and appropriate ICD therapy in patients with hypertrophic cardiomyopathy. Clin Res Cardiol 107(2):130–137PubMedCrossRefGoogle Scholar
  35. 35.
    Pereira R et al (2017) Short QT syndrome in pediatrics. Clin Res Cardiol 106(6):393–400PubMedCrossRefGoogle Scholar
  36. 36.
    Fort J, Chronic renal failure: a cardiovascular risk factor. Kidney Int Suppl 2005(99):S25–s29Google Scholar
  37. 37.
    Schiffrin EL, Lipman ML, Mann JF (2007) Chronic kidney disease: effects on the cardiovascular system. Circulation 116(1):85–97PubMedCrossRefGoogle Scholar
  38. 38.
    Kayvanpour E et al (2017) Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals. Clin Res Cardiol 106(2):127–139PubMedCrossRefGoogle Scholar
  39. 39.
    Chua HC et al (2018) Unexplained cardiac arrest: a tale of conflicting interpretations of KCNQ1 genetic test results. Clin Res Cardiol 107(8):670–678PubMedCrossRefGoogle Scholar
  40. 40.
    Writing Committee M et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128(16):e240–e327Google Scholar
  41. 41.
    Priori SG, Blomstrom-Lundqvist C (2015) European Society of Cardiology Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death summarized by co-chairs. Eur Heart J 36(41):2757–2759PubMedCrossRefGoogle Scholar
  42. 42.
    Bettin M et al (2018) Right versus left parasternal electrode position in the entirely subcutaneous ICD. Clin Res Cardiol 107(5):389–394PubMedCrossRefGoogle Scholar
  43. 43.
    Bettin M et al (2018) Follow-up of the first patients with a totally subcutaneous ICD in Germany from implantation till battery depletion. Clin Res Cardiol. PubMedCrossRefGoogle Scholar
  44. 44.
    Kobe J et al (2017) Posttraumatic stress and quality of life with the totally subcutaneous compared to conventional cardioverter-defibrillator systems. Clin Res Cardiol 106(5):317–321PubMedCrossRefGoogle Scholar
  45. 45.
    Erath JW et al (2017) The wearable cardioverter-defibrillator in a real-world clinical setting: experience in 102 consecutive patients. Clin Res Cardiol 106(4):300–306PubMedCrossRefGoogle Scholar
  46. 46.
    Wolff G et al (2017) Implantable cardioverter/defibrillators for primary prevention in dilated cardiomyopathy post-DANISH: an updated meta-analysis and systematic review of randomized controlled trials. Clin Res Cardiol 106(7):501–513PubMedCrossRefGoogle Scholar
  47. 47.
    Omran H et al (2018) Characteristics and circadian distribution of cardiac arrhythmias in patients with heart failure and sleep-disordered breathing. Clin Res Cardiol. PubMedCrossRefGoogle Scholar
  48. 48.
    Linz D et al (2016) Impact of obstructive and central apneas on ventricular repolarisation: lessons learned from studies in man and pigs. Clin Res Cardiol 105(8):639–647PubMedCrossRefGoogle Scholar
  49. 49.
    Duncker D et al (2014) Risk for ventricular fibrillation in peripartum cardiomyopathy with severely reduced left ventricular function-value of the wearable cardioverter/defibrillator. Eur J Heart Fail 16(12):1331–1336PubMedCrossRefGoogle Scholar
  50. 50.
    Lachmann V et al (2017) Aborted sudden cardiac death: ICD or no ICD. Clin Res Cardiol 106(9):760–763PubMedCrossRefGoogle Scholar
  51. 51.
    Shen L et al (2017) Declining risk of sudden death in heart failure. N Engl J Med 377(1):41–51PubMedCrossRefGoogle Scholar
  52. 52.
    De Bie MK et al (2008) Prevention of sudden cardiac death: rationale and design of the implantable cardioverter defibrillators in Dialysis patients (ICD2) TRIAL–a prospective pilot study. Curr Med Res Opin 24(8):2151–2157PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kathrin Weidner
    • 1
  • Michael Behnes
    • 1
    Email author return OK on get
  • Tobias Schupp
    • 1
  • Jonas Rusnak
    • 1
  • Linda Reiser
    • 1
  • Gabriel Taton
    • 1
  • Thomas Reichelt
    • 1
  • Dominik Ellguth
    • 1
  • Niko Engelke
    • 1
  • Armin Bollow
    • 1
  • Ibrahim El-Battrawy
    • 1
  • Uzair Ansari
    • 1
  • Jorge Hoppner
    • 2
  • Christoph A. Nienaber
    • 3
  • Kambis Mashayekhi
    • 4
  • Christel Weiß
    • 5
  • Muharrem Akin
    • 6
  • Martin Borggrefe
    • 1
  • Ibrahim Akin
    • 1
  1. 1.First Department of Medicine, Faculty of Medicine MannheimUniversity Medical Centre Mannheim (UMM), University of Heidelberg, European Center for AngioScience (ECAS), and DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/MannheimMannheimGermany
  2. 2.Clinic for Diagnostic and Interventional Radiology HeidelbergUniversity HeidelbergHeidelbergGermany
  3. 3.Royal Brompton and Harefield Hospitals, NHSLondonUK
  4. 4.Department of Cardiology and Angiology IIUniversity Heart Center FreiburgBad KrozingenGermany
  5. 5.Institute of Biomathematics and Medical Statistics, Faculty of Medicine Mannheim, University Medical Center Mannheim (UMM)Heidelberg UniversityMannheimGermany
  6. 6.Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany

Personalised recommendations