Clinical Research in Cardiology

, Volume 108, Issue 2, pp 142–149 | Cite as

Independent effect of atrial fibrillation on natriuretic peptide release

  • Marek SramkoEmail author
  • Dan Wichterle
  • Vojtech Melenovsky
  • Janka Franekova
  • Marcell Clemens
  • Masato Fukunaga
  • Josef Kautzner
Original Paper



We investigated whether the increase of plasma natriuretic peptides (NPs) in atrial fibrillation (AF) is independent of the effect of AF on the left atrial (LA) hemodynamics.


Hemodynamically stable patients scheduled for AF ablation underwent assessment of B-type natriuretic peptide (BNP) and mid-regional pro-atrial natriuretic peptide (MR-proANP), echocardiography, and direct measurement of left atrial (LA) pressure. Concentrations of the NPs were compared between patients in AF (n = 31) and controls in sinus rhythm (SR; n = 31) who were matched for age, gender, heart rate, left ventricular ejection fraction, LA volume index, and directly measured mean LA pressure. Eighteen patients underwent serial measurement of NPs and LA pressure during native SR and after 20 min of pacing-induced AF.


Compared to the patients in SR, the patients in AF had 2.6 times higher unadjusted BNP [median (inter-quartile range), 101 (63, 129) vs. 38 (26, 79) ng/L] and two times higher unadjusted MR-proANP [183 (140, 230) vs. 91 (67, 135) pmol/L; both p < 0.001]. Concentrations of both NPs correlated with mean LA pressure in the patients in SR (r = 0.75 for BNP and 0.62 for MR-proANP, both p < 0.001) but not in the patients in AF (r = 0.18 and 0.04, respectively, both p > 0.3). Both NPs increased significantly during induced AF [adjusted median (IQR) relative change, BNP: 27 (22; 40)%, MR-proANP: 75 (64; 99)%, both p < 0.001] without a significant change in the LA pressure.


The increase of NPs in AF was independent of its effect on the LA hemodynamics.


Atrial fibrillation Natriuretic peptide Atrial pressure Heart failure with preserved ejection fraction 



This study was funded by the grant of the Ministry of Health of the Czech Republic—“Conceptual development of a research organization (IKEM IN 00023001)”. MS was supported by a research fellowship grant from the European Society of Cardiology and a research grant of the Czech Society of Cardiology.

Compliance with ethical standards

Conflict of interest

JK served as an advisory board member for Biosense Webster, Boston Scientific, Medtronic, Liva Nova and St. Jude Medical. Other authors have nothing to declare.


  1. 1.
    Kotecha D, Lam CS, Van Veldhuisen DJ, Van Gelder IC, Voors AA, Rienstra M (2016) Heart failure with preserved ejection fraction and atrial fibrillation: vicious twins. J Am Coll Cardiol 68(20):2217–2228. Google Scholar
  2. 2.
    Bai M, Yang J, Li Y (2009) Serum N-terminal-pro-brain natriuretic peptide level and its clinical implications in patients with atrial fibrillation. Clin Cardiol 32(12):E1–E5. Google Scholar
  3. 3.
    Bakowski D, Wozakowska-Kaplon B, Opolski G (2009) The influence of left ventricle diastolic function on natriuretic peptides levels in patients with atrial fibrillation. Pacing Clin Electrophysiol 32(6):745–752. Google Scholar
  4. 4.
    Corell P, Gustafsson F, Kistorp C, Madsen LH, Schou M, Hildebrandt P (2007) Effect of atrial fibrillation on plasma NT-proBNP in chronic heart failure. Int J Cardiol 117(3):395–402. Google Scholar
  5. 5.
    Lee SH, Jung JH, Choi SH, Lee N, Park WJ, Oh DJ, Rhim CY, Lee KH (2006) Determinants of brain natriuretic peptide levels in patients with lone atrial fibrillation. Circ J 70(1):100–104Google Scholar
  6. 6.
    Letsas KP, Filippatos GS, Pappas LK, Mihas CC, Markou V, Alexanian IP, Efremidis M, Sideris A, Maisel AS, Kardaras F (2009) Determinants of plasma NT-pro-BNP levels in patients with atrial fibrillation and preserved left ventricular ejection fraction. Clin Res Cardiol 98(2):101–106. Google Scholar
  7. 7.
    Rossi A, Enriquez-Sarano M, Burnett JC Jr, Lerman A, Abel MD, Seward JB (2000) Natriuretic peptide levels in atrial fibrillation: a prospective hormonal and Doppler-echocardiographic study. J Am Coll Cardiol 35(5):1256–1262Google Scholar
  8. 8.
    Silvet H, Young-Xu Y, Walleigh D, Ravid S (2003) Brain natriuretic peptide is elevated in outpatients with atrial fibrillation. Am J Cardiol 92(9):1124–1127Google Scholar
  9. 9.
    Ulimoen SR, Enger S, Tveit A (2009) Impact of atrial fibrillation on NT-proBNP levels in a 75-year-old population. Scand J Clin Lab Invest 69(5):579–584. Google Scholar
  10. 10.
    Lam CS, Rienstra M, Tay WT, Liu LC, Hummel YM, van der Meer P, de Boer RA, Van Gelder IC, van Veldhuisen DJ, Voors AA, Hoendermis ES (2017) Atrial fibrillation in heart failure with preserved ejection fraction: association with exercise capacity, left ventricular filling pressures, natriuretic peptides, and left atrial volume. JACC Heart Fail 5(2):92–98. Google Scholar
  11. 11.
    Melenovsky V, Hwang SJ, Redfield MM, Zakeri R, Lin G, Borlaug BA (2015) Left atrial remodeling and function in advanced heart failure with preserved or reduced ejection fraction. Circ Heart Fail 8(2):295–303. Google Scholar
  12. 12.
    Degiovanni A, Boggio E, Prenna E, Sartori C, De Vecchi F, Marino PN, From the Novara Atrial Fibrillation Study G (2018) Association between left atrial phasic conduit function and early atrial fibrillation recurrence in patients undergoing electrical cardioversion. Clin Res Cardiol 107(4):329–337. Google Scholar
  13. 13.
    Sramko M, Wichterle D, Melenovsky V, Clemens M, Fukunaga M, Peichl P, Aldhoon B, Cihak R, Kautzner J (2017) Resting and exercise-induced left atrial hypertension in patients with atrial fibrillation: the causes and implications for catheter ablation. J Am Coll Cardiol EP. Google Scholar
  14. 14.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200. Google Scholar
  15. 15.
    Tzikas S, Keller T, Wild PS, Schulz A, Zwiener I, Zeller T, Schnabel RB, Sinning C, Lubos E, Kunde J, Munzel T, Lackner KJ, Blankenberg S (2013) Midregional pro-atrial natriuretic peptide in the general population/Insights from the Gutenberg Health Study. Clin Chem Lab Med 51(5):1125–1133. Google Scholar
  16. 16.
    Ballo P, Betti I, Barchielli A, Balzi D, Castelli G, De Luca L, Gheorghiade M, Zuppiroli A (2016) Prognostic role of N-terminal pro-brain natriuretic peptide in asymptomatic hypertensive and diabetic patients in primary care: impact of age and gender: results from the PROBE-HF study. Clin Res Cardiol 105(5):421–431. Google Scholar
  17. 17.
    Ho D, Imai K, King G, Stuart EA (2011) MatchIt: Nonparametric preprocessing for parametric causal inference. J Stat Softw. Google Scholar
  18. 18.
    Francis GS, Felker GM, Tang WH (2016) A test in context: critical evaluation of natriuretic peptide testing in heart failure. J Am Coll Cardiol 67(3):330–337. Google Scholar
  19. 19.
    Miro O, Gil VI, Martin-Sanchez FJ, Jacob J, Herrero P, Alquezar A, Llauger L, Aguilo S, Martinez G, Rios J, Dominguez-Rodriguez A, Harjola VP, Muller C, Parissis J, Peacock WF, Llorens P, Research Group on Acute Heart Failure of the Spanish Society of Emergency Medicine R (2018) Short-term outcomes of heart failure patients with reduced and preserved ejection fraction after acute decompensation according to the final destination after emergency department care. Clin Res Cardiol. Google Scholar
  20. 20.
    Riedel O, Ohlmeier C, Enders D, Elsasser A, Vizcaya D, Michel A, Eberhard S, Schlothauer N, Berg J, Garbe E (2018) The contribution of comorbidities to mortality in hospitalized patients with heart failure. Clin Res Cardiol 107(6):487–497. Google Scholar
  21. 21.
    Tschope C, Birner C, Bohm M, Bruder O, Frantz S, Luchner A, Maier L, Stork S, Kherad B, Laufs U (2018) Heart failure with preserved ejection fraction: current management and future strategies: expert opinion on the behalf of the Nucleus of the “Heart Failure Working Group” of the German Society of Cardiology (DKG). Clin Res Cardiol 107(1):1–19. Google Scholar
  22. 22.
    Morbach C, Buck T, Rost C, Peter S, Gunther S, Stork S, Prettin C, Erbel R, Ertl G, Angermann CE, Handheld BNPRN (2018) Point-of-care B-type natriuretic peptide and portable echocardiography for assessment of patients with suspected heart failure in primary care: rationale and design of the three-part handheld-BNP program and results of the training study. Clin Res Cardiol 107(2):95–107. Google Scholar
  23. 23.
    Greene SJ, Fonarow GC, Solomon SD, Subacius HP, Ambrosy AP, Vaduganathan M, Maggioni AP, Bohm M, Lewis EF, Zannad F, Butler J, Gheorghiade M (2016) Influence of atrial fibrillation on post-discharge natriuretic peptide trajectory and clinical outcomes among patients hospitalized for heart failure: insights from the ASTRONAUT trial. Eur J Heart Fail. Google Scholar
  24. 24.
    Wozakowska-Kaplon B (2010) Changes in plasma natriuretic peptide levels in patients with atrial fibrillation after cardioversion. Int J Cardiol 144(3):436–437. Google Scholar
  25. 25.
    Charitakis E, Walfridsson H, Alehagen U (2016) Short-term influence of radiofrequency ablation on NT-proBNP, MR-proANP, copeptin, and MR-proADM in patients with atrial fibrillation: data from the observational SMURF Study. J Am Heart Assoc. Google Scholar
  26. 26.
    Vinch CS, Rashkin J, Logsetty G, Tighe DA, Hill JC, Meyer TE, Rosenthal LS, Aurigemma GP (2004) Brain natriuretic peptide levels fall rapidly after cardioversion of atrial fibrillation to sinus rhythm. Cardiology 102(4):188–193. Google Scholar
  27. 27.
    Schotten U, Verheule S, Kirchhof P, Goette A (2011) Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 91(1):265–325. Google Scholar
  28. 28.
    Heijman J, Voigt N, Nattel S, Dobrev D (2014) Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res 114(9):1483–1499. Google Scholar
  29. 29.
    Zhang YH, Youm JB, Earm YE (2008) Stretch-activated non-selective cation channel: a causal link between mechanical stretch and atrial natriuretic peptide secretion. Prog Biophys Mol Biol 98(1):1–9. Google Scholar
  30. 30.
    De Jong AM, Maass AH, Oberdorf-Maass SU, Van Veldhuisen DJ, Van Gilst WH, Van Gelder IC (2011) Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation. Cardiovasc Res 89(4):754–765. Google Scholar
  31. 31.
    Edwards BS, Zimmerman RS, Schwab TR, Heublein DM, Burnett JC Jr (1988) Atrial stretch, not pressure, is the principal determinant controlling the acute release of atrial natriuretic factor. Circ Res 62(2):191–195Google Scholar
  32. 32.
    Fiala M, Wichterle D, Chovancik J, Bulkova V, Wojnarova D, Nevralova R, Januska J (2010) Left atrial voltage during atrial fibrillation in paroxysmal and persistent atrial fibrillation patients. Pacing Clin Electrophysiol 33(5):541–548. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of CardiologyInstitute for Clinical and Experimental Medicine (IKEM)PragueCzech Republic
  2. 2.Department of Laboratory MethodsInstitute for Clinical and Experimental Medicine (IKEM)PragueCzech Republic

Personalised recommendations