Advertisement

Zeitschrift für Gerontologie und Geriatrie

, Volume 52, Issue 1, pp 23–27 | Cite as

Influence of single and dual tasks on gait stability and gait speed in the elderly

An explorative study
  • Slavko RoganEmail author
  • Jan Taeymans
  • Christian Bangerter
  • Sven Simon
  • Philippe Terrier
  • Roger Hilfiker
Original contribution

Abstract

Background

Gait stability during dual tasks is important for elderly persons, especially for elderly individuals in need of care. A study was conducted to assess gait stability by using Lyapunov exponents (λS) during single task and dual task conditions in independently living elderly people (Go-Goes) and elderly people in need of care (No-Goes).

Material and methods

This study was conducted with 26 participants (average age 82 ± 9.4 years) who were allocated to the Go-Goes or No-Goes group. Outcomes were mediolateral and vertical Lyapunov exponents (λS) from accelerometer data and gait speed under single task and dual task conditions.

Results

In both groups significantly higher mediolateral and vertical Lyapunov exponent values as well as significantly lower walking speeds under dual task conditions were found in both groups. The effect sizes were small to moderate for mediolateral λS and large for vertical λS and these differences remained when the analyses were adjusted for walking speed.

Conclusion

Elderly people showed lower gait stability and gait speed under dual task conditions compared to single task conditions.

Keywords

Attention focus Frailty Gait parameter 

Einfluss von Einfach- und Doppelaufgaben auf Gangstabilität und Ganggeschwindigkeit bei älteren Menschen

Eine explorative Studie

Zusammenfassung

Hintergrund

Gangstabilität während Doppelaufgaben ist für ältere Personen ein wichtiger Faktor, besonders für pflegebedürftige ältere Menschen. Diese Studie wurde durchgeführt, um die Gangstabilität bei Go-Goes und No-Goes während Einfach- und Doppelaufgaben mit Hilfe des Ljapunow-Exponenten (λS) zu bestimmen.

Material und Methoden

Diese Studie wurde mit 26 ProbandInnen (82 ± 9.4 Jahre) durchgeführt. Es wurden 2 Gruppen gebildet (Go-Goes und No-Goes). Als Outcomes dienten der medio-laterale und vertikale Ljapunow-Exponent (λS) sowie die Gehgeschwindigkeit.

Ergebnisse

In beiden Gruppen zeigten sich signifikant höhere medio-laterale und vertikale Ljapunow-Exponenten-Werte sowie signifikant tiefere Gehgeschwindigkeiten beim Gehen unter Doppelaufgaben. Nach Korrektur der Gehgeschwindigkeit zeigten sich für den medio-lateralen λS moderate und für den vertikalen λS große Effektstärken.

Schlussfolgerung

Ältere Menschen sind während Doppelaufgaben signifikant instabiler und langsamer.

Schlüsselwörter

Aufmerksamkeitsfokus Gebrechlichkeit Gangparameter 

Notes

Acknowledgements

We say thanks to Ross Bennie for proofreading.

Compliance with ethical guidelines

Conflict of interest

S. Rogan, T. Jan, C. Bangerter, S. Simon, T. Philippe and R. Hilfiker declare that they have no competing interests.

This exploratory study was conducted following the STROBE Statement guidelines

References

  1. 1.
    Dingwell JB, Cusumano JP (2000) Nonlinear time series analysis of normal and pathological human walking. Chaos 10(4):848–863. doi: 10.1063/1.1324008 CrossRefGoogle Scholar
  2. 2.
    Bruijn SM, Bregman DJ, Meijer OG, Beek PJ, van Dieën JH (2012) Maximum Lyapunov exponents as predictors of global gait stability: a modelling approach. Med Eng Phys 34(4):428–436CrossRefGoogle Scholar
  3. 3.
    Bruijn SM, van Dieën JH, Meijer OG, Beek PJ (2009) Is slow walking more stable? J Biomech 42(10):1506–1512CrossRefGoogle Scholar
  4. 4.
    Rosenstein MT, Collins JJ, De Luca CJ (1993) A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65(1):117–134CrossRefGoogle Scholar
  5. 5.
    Rogan S (2015) Innovative training program for elderly in long-term care. J Health Care Curr Rev 2(4):40Google Scholar
  6. 6.
    Rogan S, de Bruin ED, Radlinger L, Joehr C, Wyss C, Stuck N‑J, Bruelhart Y, de Bie RA, Hilfiker R (2015) Effects of whole-body vibration on proxies of muscle strength in old adults: a systematic review and meta-analysis on the role of physical capacity level. Eur Rev Aging Phys Act 12(1):1–26CrossRefGoogle Scholar
  7. 7.
    von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, Iniciativa S (2008) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Rev Esp Salud Publica 82(3):251–259Google Scholar
  8. 8.
    Swiss AOM (2004) Treatment and care of elderly persons who are in need of care. Swiss Med Wkly 134(618):41–42Google Scholar
  9. 9.
    O’Connor SM, Kuo AD (2009) Direction-dependent control of balance during walking and standing. J Neurophysiol 102(3):1411–1419. doi: 10.1152/jn.00131.2009 CrossRefGoogle Scholar
  10. 10.
    McAndrew PM, Wilken JM, Dingwell JB (2011) Dynamic stability of human walking in visually and mechanically destabilizing environments. J Biomech 44(4):644–649. doi: 10.1016/j.jbiomech.2010.11.007 CrossRefGoogle Scholar
  11. 11.
    Agner S, Bernet J, Brulhart Y, Radlinger L, Rogan S (2015) Spatiotemporal gait parameters during dual task walking in need of care elderly and young adults: a cross-sectional study. Z Gerontol Geriatr 48(8):740–746. doi: 10.1007/s00391-015-0884-1 CrossRefGoogle Scholar
  12. 12.
    Hilfiker R, Vaney C, Gattlen B, Meichtry A, Deriaz O, Lugon-Moulin V, Anchisi-Bellwald AM, Palaci C, Foinant D, Terrier P (2013) Local dynamic stability as a responsive index for the evaluation of rehabilitation effect on fall risk in patients with multiple sclerosis: a longitudinal study. BMC Res Notes 6:260. doi: 10.1186/1756-0500-6-260 CrossRefGoogle Scholar
  13. 13.
    R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/. Accessed 10 July 2016Google Scholar
  14. 14.
    van Schooten KS, Rispens SM, Pijnappels M, Daffertshofer A, van Dieen JH (2013) Assessing gait stability: the influence of state space reconstruction on inter- and intra-day reliability of local dynamic stability during over-ground walking. J Biomech 46(1):137–141. doi: 10.1016/j.jbiomech.2012.10.032 CrossRefGoogle Scholar
  15. 15.
    Cohen J (1992) A power primer. Psychol Bull 112(1):155CrossRefGoogle Scholar
  16. 16.
    Riva F, Bisi MC, Stagni R (2014) Gait variability and stability measures: Minimum number of strides and within-session reliability. Comput Biol Med 50:9–13CrossRefGoogle Scholar
  17. 17.
    Kressig R, Beauchet O (2004) Die Rolle der Ganganalyse in therapeutischen Trainingsprogrammen von Betagten. Z Gerontol Geriatr 37(1):15–19CrossRefGoogle Scholar
  18. 18.
    Jansenberger H (2011) Sturzprävention in Therapie und Training. Thieme, StuttgartGoogle Scholar
  19. 19.
    Runge M (2000) Gehen, Gehstörungen und Stürze im Alter. Ost Sonderh Mobil Alter 15–20Google Scholar
  20. 20.
    Hagner-Derengowska M, Kałużny K, Hagner W, Kałużna A, Kochański B, Borkowska A, Budzyński J (2016) The effect of two different cognitive tests on gait parameters during dual tasks in healthy postmenopausal women. Biomed Res Int 2016:1–7CrossRefGoogle Scholar
  21. 21.
    Howcroft J, Kofman J, Lemaire ED, McIlroy WE (2016) Analysis of dual-task elderly gait in fallers and non-fallers using wearable sensors. J Biomech 49(7):992–1001CrossRefGoogle Scholar
  22. 22.
    Grillo T, Spirgi-Gantert I, Suppe B (2014) FBL Klein-Vogelbach Functional Kinetics. Die Grundlagen: Bewegungsanalyse, Untersuchung, Behandlung. Springer, Berlin HeidelbergGoogle Scholar
  23. 23.
    Li KZ, Lindenberger U, Freund AM, Baltes PB (2001) Walking while memorizing: age-related differences in compensatory behavior. Psychol Sci 12(3):230–237CrossRefGoogle Scholar
  24. 24.
    England SA, Granata KP (2007) The influence of gait speed on local dynamic stability of walking. Gait Posture 25(2):172–178CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  1. 1.Department Health, Discipline Physiotherapy, Bern University of Applied SciencesBernSwitzerland
  2. 2.Academy for Physiotherapy and Training EducationGrenzach-WyhlenGermany
  3. 3.Faculty of Sport and Rehabilitation SciencesVrije Universiteit BrusselBrusselsBelgium
  4. 4.Faculty of Health SciencesAntwerp UniversityAntwerpBelgium
  5. 5.IRR, Institute for Research in Rehabilitation, Sion, Switzerland & Clinique romande de réadaptation SUVACareSionSwitzerland
  6. 6.School of Health Sciences, PhysiotherapyHES-SO Valais-WallisLeukerbadSwitzerland

Personalised recommendations