International Journal of Colorectal Disease

, Volume 34, Issue 11, pp 1871–1877 | Cite as

MiR-218 and miR-100 polymorphisms as markers of irinotecan-based chemotherapy response in metastatic colorectal cancer

  • Dimitra-Ioanna Lampropoulou
  • Gerasimos Aravantinos
  • Konstantinos Laschos
  • Theodosis Theodosopoulos
  • Christos Papadimitriou
  • Maria GazouliEmail author
Original Article



Colorectal cancer is the fourth cause of cancer-related death. Drug toxicity and resistance remain concerns of major importance. miR-100 and miR-218 are micro-RNAs that regulate cellular proliferation, differentiation and apoptosis acting as oncogenes and tumour suppressors; their functions and have been linked with toxicity development and drug resistance.


We investigated the correlation between rs11134527 miR-218 and rs1834306 miR-100 polymorphisms and irinotecan-based regimens with regard to drug efficacy and toxicity. A total of 105 mCRC patients receiving irinotecan-based regimens were included in our study and assessed in terms of toxicity development and response to treatment. Rs11134527 miR-218 and rs1834306 miR-100 polymorphism genotyping in the peripheral blood was performed with PCR-RFLP.


Neither rs11134527 miR-218 nor rs1834306 miR-100 are associated with toxicity risk to treatment regimens. GA/AA genotypes of rs11134527 and CT/TT genotypes of rs1834306 were associated with a significantly reduced time-to-progression (TTP) and overall survival (OS).


GA/AA genotypes of rs11134527 miR-218 and CT/TT genotypes of rs1834306 miR-100 polymorphisms could serve as prognostic biomarkers of TTP and OS. Carriers of the A allele of the miR-218 rs11134527 and T allele of the miR-100 rs1834306 polymorphisms are more likely not to respond to irinotecan-based therapies. However, further studies in larger patient populations are required.


miRNAs Single-nucleotide polymorphisms mCRC Irinotecan Chemotherapy 


Funding information

Funding was provided by Hellenic Society of Medical Oncology grant to M. Gazouli and G. Aravantinos.

Compliance with ethical standards

All participants in the study signed an informed consent form. This case–control study is in accordance with the Helsinki Declaration and has been approved by the centres Review Board

Conflict of interest

The authors declare that they have no conflict of interests.


  1. 1.
    Favoriti P, Carbone G, Greco M, Pirozzi F, Pirozzi RE, Corcione F (2016) Worldwide burden of colorectal cancer: a review. Updat Surg 68:7–11CrossRefGoogle Scholar
  2. 2.
    Kopetz S, Chang GJ, Overman MJ, Eng C, Sargent DJ, Larson DW, Grothey A, Vauthey JN, Nagorney DM, McWilliams RR (2009) Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J Clin Oncol 27:3677–3683PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Zheng T, Wang J, Chen X, Liu L (2010) Role of microRNA in anticancer drug resistance. Int J Cancer 126:2–10PubMedCrossRefGoogle Scholar
  4. 4.
    Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T (2006) MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res 66:9090–9098PubMedCrossRefGoogle Scholar
  5. 5.
    Vergani E, Di Guardo L, Dugo M, Rigoletto S, Tragni G, Ruggeri R, Perrone F, Tamborini E, Gloghini A, Arienti F, Vergani B, Deho P, De Cecco L, Vallacchi V, Frati P, Shahaj E, Villa A, Santinami M, De Braud F, Rivoltini L, Rodolfo M (2016) Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b. Oncotarget. 7:4428–4441PubMedCrossRefGoogle Scholar
  6. 6.
    Hu Y, Xu K, Yagüe E (2015) miR-218 targets survivin and regulates resistance to chemotherapeutics in breast cancer. Breast Cancer Res Treat 151:269–280PubMedCrossRefGoogle Scholar
  7. 7.
    Lu Y, Zhao X, Liu Q, Li C, Graves-Deal R, Cao Z, Singh B, Franklin JL, Wang J, Hu H, Wei T, Yang M, Yeatman TJ, Lee E, Saito-Diaz K, Hinger S, Patton JG, Chung CH, Emmrich S, Klusmann JH, Fan D, Coffey RJ (2017) lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling. Nat Med 23:1331–1341PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Chen P, Zhao X, Ma L (2013) Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in hepatocellular carcinoma. Mol Cell Biochem 383:49–58PubMedCrossRefGoogle Scholar
  9. 9.
    Henson BJ, Bhattacharjee S, O’Dee DM, Feingold E, Gollin SM (2009) Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosom Cancer 48:569–582PubMedCrossRefGoogle Scholar
  10. 10.
    Wang G, Chen L, Meng J, Chen M, Zhuang L, Zhang L (2013) Overexpression of microRNA-100 predicts an unfavorable prognosis in renal cell carcinoma. Int Urol Nephrol 45:373–379PubMedCrossRefGoogle Scholar
  11. 11.
    Chen P, Xi Q, Wang Q, Wei P (2014) Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in colorectal cancer. Med Oncol 31:235PubMedCrossRefGoogle Scholar
  12. 12.
    Fujino Y, Takeishi S, Nishida K, Okamoto K, Muguruma N, Kimura T, Kitamura S, Miyamoto H, Fujimoto A, Higashijima J, Shimada M, Rokutan K, Takayama T (2017) Downregulation of microRNA-100/microRNA-125b is associated with lymph node metastasis in early colorectal cancer with submucosal invasion. Cancer Sci 108:390–397PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Boni V, Zarate R, Villa JC, Bandrés E, Gomez MA, Maiello E, Garcia-Foncillas J, Aranda E (2011) Role of primary miRNA polymorphic variants in metastatic colon cancer patients treated with 5-fluorouracil and irinotecan. Pharm J 11:429–436Google Scholar
  14. 14.
    Yang XD, Xu X, Zhang SY, Wu Y, Xing CG, Ru G, Xu HT, Cao JP (2015) Role of miR-100 in the radioresistance of colorectal cancer cells. Am J Cancer Res 5:545–559PubMedPubMedCentralGoogle Scholar
  15. 15.
    Yamamoto N, Kinoshita T, Nohata N, Itesako T, Yoshino H, Enokida H, Nakagawa M, Shozu M, Seki N (2013) Tumor suppressive microRNA-218 inhibits cancer cell migration and invasion by targeting focal adhesion pathways in cervical squamous cell carcinoma. Int J Oncol 42:1523–1532PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Zhu Z, Xu Y, Du J, Tan J, Jiao H (2014) Expression of MicroRNA-218 in human pancreatic ductal adenocarcinoma and its correlation with tumor progression and patient survival. J Surg Oncol 109:89–94PubMedCrossRefGoogle Scholar
  17. 17.
    Jiang L, Wang C, Sun C, Xu Y, Ding Z, Zhang X, Huang J, Yu H (2014) The impact of pri-miR-218 rs11134527 on the risk and prognosis of patients with esophageal squamous cell carcinoma. Int J Clin Exp Pathol 7:6206–6212PubMedPubMedCentralGoogle Scholar
  18. 18.
    Shi TY, Chen XJ, Zhu ML, Wang MY, He J, Yu KD, Shao ZM, Sun MH, Zhou XY, Cheng X, Wu X, Wei Q (2013) A pri-miR-218 variant and risk of cervical carcinoma in Chinese women. BMC Cancer 13:19PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Li C, Zhang Y, Li Y, Ma Q, Liu S, Yao Y, Tan F, Shi L, Yao Y (2018) The association of polymorphisms in miRNAs with nonsmall cell lung cancer in a Han Chinese population. Cancer Manag Res 10:697–704PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Danesh H, Hashemi M, Bizhani F, Hashemi SM, Bahari G (2018) Association study of miR-100, miR-124-1, miR-218-2, miR-301b, miR-605, and miR-4293 polymorphisms and the risk of breast cancer in a sample of Iranian population. Gene. 647:73–78PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Moazeni-Roodi A, Bahari G, Taheri M, Ansari H, Hashemi M (2018) Association between miR-218 rs11134527 polymorphism and risk of selected types of cancer in Asian population: an updated metaanalysis of case-control studies. Gene. 678:370–376PubMedCrossRefGoogle Scholar
  22. 22.
    Pavkovic M, Vaidya VS (2016) MicroRNAs and drug-induced kidney injury. Pharmacol Ther 163:48–57PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhou X, Qu Z, Zhu C, Lin Z, Huo Y, Wang X, Wang J, Li B (2016) Identification of urinary microRNA biomarkers for detection of gentamicin-induced acute kidney injury in rats. Regul Toxicol Pharmacol 78:78–84PubMedCrossRefGoogle Scholar
  24. 24.
    Li P, Zhang X, Wang L, Du L, Yang Y, Liu T, Li C, Wang C (2017) lncRNA HOTAIR contributes to 5FU resistance through suppressing miR-218 and activating NF-κB/TS signaling in colorectal cancer. Mol Ther Nucleic Acids 8:356–369PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ratain MJ (2002) Irinotecan dosing: does the CPT in CPT-11 stand for “Can’t predict toxicity”? J Clin Oncol 20:7–8PubMedCrossRefGoogle Scholar
  26. 26.
    Toffoli G, Cecchin E, Corona G, Russo A, Buonadonna A, D’Andrea M, Pasetto LM, Pessa S, Errante D, De Pangher V, Giusto M, Medici M, Gaion F, Sandri P, Galligioni E, Bonura S, Boccalon M, Biason P, Frustaci S (2006) The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J Clin Oncol 24:3061–3068PubMedCrossRefGoogle Scholar
  27. 27.
    Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D, Aranda Aguilar E, Bardelli A, Benson A, Bodoky G, Ciardiello F, D'Hoore A, Diaz-Rubio E, Douillard JY, Ducreux M, Falcone A, Grothey A, Gruenberger T, Haustermans K, Heinemann V, Hoff P, Köhne CH, Labianca R, Laurent-Puig P, Ma B, Maughan T, Muro K, Normanno N, Österlund P, Oyen WJ, Papamichael D, Pentheroudakis G, Pfeiffer P, Price TJ, Punt C, Ricke J, Roth A, Salazar R, Scheithauer W, Schmoll HJ, Tabernero J, Taïeb J, Tejpar S, Wasan H, Yoshino T, Zaanan A, Arnold D (2016) ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 27:1386–1422PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Saltz LB, Clarke S, Diaz-Rubio E, Scheithauer W, Figer A, Wong R, Koski S, Lichinitser M, Yang TS, Rivera F, Couture F, Sirzén F, Cassidy J (2008) Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 26:2013–2019PubMedCrossRefGoogle Scholar
  29. 29.
    Ciardiello F, Lenz HJ, Kohne CH, Heinemann V, Tejpar S, Esser R (2014) Effect of KRAS and NRAS mutational status on first-line treatment with FOLFIRI plus cetuximab in patients with metastatic colorectal cancer (mCRC): new results from the CRYSTAL trial. J Clin Oncol 32:3_suppl, LBA443-LBA443CrossRefGoogle Scholar
  30. 30.
    Seymoyr MT, Brown SR, Middleton G, Maughan T, Richman S, Gwyther S, Lowe C, Seligmann JF, Wadsley J, Maisey N, Chau I, Hill M, Dawson L, Falk S, O'Callaghan A, Benstead K, Chambers P, Oliver A, Marshall H, Napp V, Quirke P (2013) Panitumumab and irinotecan versus irinotecan alone for patients with KRAS wild- type, fluorouracil-resistant advanced colorectal cancer (PICCOLO): a prospectively stratified randomised trial. Lancet Oncol 14:749–759CrossRefGoogle Scholar
  31. 31.
    Dervenis C, Xynos E, Sotiropoulos G, Gouvas N, Boukovinas I, Agalianos C, Androulakis N, Athanasiadis A, Christodoulou C, Chrysou E, Emmanouilidis C, Georgiou P, Karachaliou N, Katopodi O, Kountourakis P, Kyriazanos I, Makatsoris T, Papakostas P, Papamichael D, Pechlivanides G, Pentheroudakis G, Pilpilidis I, Sgouros J, Tekkis P, Triantopoulou C, Tzardi M, Vassiliou V, Vini L, Xynogalos S, Ziras N, Souglakos J (2016) Clinical practice guidelines for the management of metastatic colorectal cancer: a consensus statement of the Hellenic Society of Medical Oncologists (HeSMO). Ann Gastroenterol 29:390–416PubMedPubMedCentralGoogle Scholar
  32. 32.
    Lampropoulou DI, Aravantinos G, Katifelis H, Lazaris F, Laschos K, Theodosopoulos T, Papadimitriou C, Gazouli M (2019) Long non-coding RNA polymorphisms and prediction of response to chemotherapy based on irinotecan in patients with metastatic colorectal cancer. Cancer Biomark 25:213–221PubMedCrossRefGoogle Scholar
  33. 33.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Jänne PA, Johnson BE, Van den Abbeele AD (2009) New response evaluation criteria in solid tumors: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247CrossRefGoogle Scholar
  34. 34.
    Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0. 2010.
  35. 35.
    Isaakidiou A, Gazouli M, Aravantinos G, Pectasides D, Theodoropoulos GE (2016) Prediction of response to combination chemotherapy with irinotecan in Greek patients with metastatic colorectal cancer. J Cancer Res Ther 12:193–197CrossRefGoogle Scholar
  36. 36.
    Zhuang Z, Hu F, Hu J, Wang C, Hou J, Yu Z, Wang TT, Liu X, Huang H (2017) MicroRNA-218 promotes cisplatin resistance in oral cancer via the PPP2R5A/Wnt signaling pathway. Oncol Rep 38:2051–2061PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Zhu J, Yang L, You W, Cui X, Chen Y, Hu J, Liu W, Li S, Song X, Wei Y, Zhang W, Li F (2015) Genetic variation in miR-100 rs1834306 is associated with decreased risk for esophageal squamous cell carcinoma in Kazakh patients in northwest China. Int J Clin Exp Pathol 8:7332–7340PubMedPubMedCentralGoogle Scholar
  38. 38.
    Motawi TK, Mady AE, Shaheen S, Elshenawy SZ, Talaat RM, Rizk SM (2019) Genetic variation in microRNA-100 (miR-100) rs1834306 T/C associated with hepatitis B virus (HBV) infection: correlation with expression level. Infect Genet Evol 73:444–449PubMedCrossRefGoogle Scholar
  39. 39.
    Gao X, Yang L, Ma Y, Yang J, Zhang G, Huang G, Huang Q, Chen L, Fu F, Chen Y, Su D, Dong Y, Ma X, Lu C, Peng X (2013) No association of functional variant in pri-miR-218 and risk of congenital heart disease in a Chinese population. Gene. 523:173–177PubMedCrossRefGoogle Scholar
  40. 40.
    Scartozzi M, Bearzi I, Pierantoni C, Mandolesi A, Loupakis F, Zaniboni A, Catalano V, Quadri A, Zorzi F, Berardi R, Biscotti T, Labianca R, Falcone A, Cascinu S (2007) Nuclear factor-kB tumor expression predicts response and survival in irinotecan-refractory metastatic colorectal cancer treated with cetuximab-irinotecan therapy. J Clin Oncol 25:3930–3935PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Wu C, Li M, Hu C, Duan H (2014) Prognostic role of microRNA polymorphisms in patients with advanced esophageal squamous cell carcinoma receiving platinum-based chemotherapy. Cancer Chemother Pharmacol 73:335–341PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Chen Z, Wu L, Lin Q, Shi J, Lin X, Shi L (2016) Evaluation of miR-182/miR-100 ratio for diagnosis and survival prediction in bladder cancer. Arch Iran Med 19:645–651PubMedGoogle Scholar
  43. 43.
    Stenholm L, Stoehlmacher-Williams J, Al-Batran SE, Heussen N, Akin S, Pauligk C, Lehmann S, Senff T, Hofheinz RD, Ehninger G, Kramer M, Goekkurt E (2013) Prognostic role of microRNA polymorphisms in advanced gastric cancer: a translational study of the Arbeitsgemeinschaft Internistische Onkologie (AIO). Ann Oncol 24:2581–2588PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Dimitra-Ioanna Lampropoulou
    • 1
  • Gerasimos Aravantinos
    • 1
  • Konstantinos Laschos
    • 1
  • Theodosis Theodosopoulos
    • 2
  • Christos Papadimitriou
    • 2
  • Maria Gazouli
    • 3
    Email author
  1. 1.Second Department of Medical OncologyGeneral Oncology Hospital of Kifissia “Agioi Anargiroi”AthensGreece
  2. 2.Second Department of Surgery, Aretaieion Hospital, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
  3. 3.Laboratory of Biology, Medical SchoolNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations