International Journal of Colorectal Disease

, Volume 34, Issue 4, pp 731–739 | Cite as

Determination of the transection margin during colorectal resection with hyperspectral imaging (HSI)

  • Boris Jansen-WinkelnEmail author
  • N. Holfert
  • H. Köhler
  • Y. Moulla
  • J. P. Takoh
  • S. M. Rabe
  • M. Mehdorn
  • M. Barberio
  • C. Chalopin
  • T. Neumuth
  • I. Gockel
Original Article



This study evaluated the use of hyperspectral imaging for the determination of the resection margin during colorectal resections instead of clinical macroscopic assessment.


The used hyperspectral camera is able to record light spectra from 500 to 1000 nm and provides information about physiologic parameters of the recorded tissue area intraoperatively (e.g., tissue oxygenation and perfusion). We performed an open-label, single-arm, and non-randomized intervention clinical trial to compare clinical assessment and hyperspectral measurement to define the resection margin in 24 patients before and after separation of the marginal artery over 15 min; HSI was performed each minute to assess the parameters mentioned above.


The false color images calculated from the hyperspectral data visualized the margin of perfusion in 20 out of 24 patients precisely. In the other four patients, the perfusion difference could be displayed with additional evaluation software. In all cases, there was a deviation between the transection line planed by the surgeon and the border line visualized by HSI (median 1 mm; range − 13 to 13 mm).

Tissue perfusion dropped up to 12% within the first 10 mm distal to the border line. Therefore, the resection area was corrected proximally in five cases due to HSI record. The biggest drop in perfusion took place in less than 2 min after devascularization.


Determination of the resection margin by HSI provides the surgeon with an objective decision aid for assessment of the best possible perfusion and ideal anastomotic area in colorectal surgery.


Hyperspectral imaging (HSI) Transection margin Colorectal surgery Tissue perfusion and oxygenation Ideal anastomotic site Prevention of anastomotic leak 



  1. 1.
    Lu G, Fei B (2014) Medical hyperspectral imaging: a review. J Biomed Opt 19(1):10901CrossRefPubMedGoogle Scholar
  2. 2.
    Jansen-Winkeln B, Maktabi M, Takoh JP, Rabe SM, Barberio M, Köhler H, Neumuth T, Melzer A, Chalopin C, Gockel I (2018) Hyperspectral imaging of gastrointestinal anastomoses. Chirurg 89(9):717–725CrossRefGoogle Scholar
  3. 3.
    Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240(2):205–213CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Holmer A, Marotz J, Wahl P, Dau M, Kämmerer PW (2018) Hyperspectral imaging in perfusion and wound diagnostics—methods and algorithms for the determination of tissue parameters. Biomed Tech (Berl) 63:547–556CrossRefGoogle Scholar
  5. 5.
    Kudszus S, Roesel C, Schachtrupp A, Hoer JJ (2010) Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbeck's Arch Surg 395:1025–1030CrossRefGoogle Scholar
  6. 6.
    Kingham TP, Pachter HL (2009) Colonic anastomotic leak: risk factors, diagnosis, and treatment. J Am Coll Surg 208:269–278CrossRefPubMedGoogle Scholar
  7. 7.
    Kawada K, Hasegawa S, Wada T, Takahashi R, Hisamori S, Hida K, Sakai Y (2017) Evaluation of intestinal perfusion by ICG fluorescence imaging in laparoscopic colorectal surgery with DST anastomosis. Surg Endosc 31:1061–1069CrossRefPubMedGoogle Scholar
  8. 8.
    Nachiappan S, Askari A, Currie A, Kennedy RH, Faiz O (2014) Intraoperative assessment of colorectal anastomotic integrity: a systematic review. Surg Endosc 28:2513–2530CrossRefPubMedGoogle Scholar
  9. 9.
    Urbanavicius L, Pattyn P, de Putte DV, Venskutonis D (2011) How to assess intestinal viability during surgery: a review of techniques. World J Gastrointest Surg 3:59–69CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sujatha-Bhaskar S, Jafari MD, Stamos MJ (2017) The role of fluorescent angiography in anastomotic leaks. Surg Technol Int 30:83–88PubMedGoogle Scholar
  11. 11.
    Diana M, Halvax P, Dallemagne B, Nagao Y, Diemunsch P, Charles AL, Agnus V, Soler L, Demartines N, Lindner V, Geny B, Marescaux J (2014) Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery. Surg Endosc 28:3108–3118CrossRefPubMedGoogle Scholar
  12. 12.
    Gioux S, Choi HS, Frangioni JV (2010) Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging 9:237–255CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Alander JT, Kaartinen I, Laakso A, Patila T, Spillmann T, Tuchin VV, Venermo M, Valisuo P (2012) A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging 2012:940585CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wada T, Kawada K, Takahashi R, Yoshitomi M, Hida K, Hasegawa S, Sakai Y (2017) ICG fluorescence imaging for quantitative evaluation of colonic perfusion in laparoscopic colorectal surgery. Surg Endosc 31:4184–4193CrossRefPubMedGoogle Scholar
  15. 15.
    Carus TDR (2012) Laparoscop fluorescence angiography with indocyanine green to control the perfusion of gastrointestinal anastomoses intraoperatively. Surg Technol Int 22:27–32PubMedGoogle Scholar
  16. 16.
    Andersen HS, Gögenur I (2014) Optimized assessment of intestinal perfusion may reduce the risk of anastomotic leakage in the gastrointestinal tract. Ugeskr Laeger 176(30):1437–1441PubMedGoogle Scholar
  17. 17.
    Brisling S, Gögenur I (2015) Fluorescence angiography can change the operative strategy in performing colorectal anastomosis. Ugeskr Laeger 177(36)Google Scholar
  18. 18.
    Al Furajii H, Cahill RA (2015) Laparoscopic and endoscopic near-infrared perfusion assessment of in situ ileoileal, ileocolic, colocolic, colorectal and ileoanal anastomosis during intestinal operation for benign and malignant disease: a video vignette. Color Dis 17(Suppl 3):37CrossRefGoogle Scholar
  19. 19.
    Degett TH, Andersen HS, Gögenur I (2016) Indocyanine green fluorescence angiography for intraoperative assessment of gastrointestinal anastomotic perfusion: a systematic review of clinical trials. Langenbeck's Arch Surg 401(6):767–775CrossRefGoogle Scholar
  20. 20.
    Jafari MD, Wexner SD, Martz JE, McLemore EC, Margolin DA, Sherwinter DA, Lee SW, Senagore AJ, Phelan MJ, Stamos MJ (2015) Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II): a multi-institutional study. J Am Coll Surg 220(1):82–92CrossRefGoogle Scholar
  21. 21.
    Ris F, Liot E, Buchs NC, Kraus R, Ismael G, Belfontali V, Douissard J, Cunningham C, Lindsey I, Guy R, Jones O, George B, Morel P, Mortensen NJ, Hompes R, Cahill RA, Near-Infrared Anastomotic Perfusion Assessment Network VOIR (2018) Multicentre phase II trial of near-infrared imaging in elective colorectal surgery. Br J Surg 105(10):1359–1367CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hoffmann H, Delko T, Kirchhoff P, Rosenthal R, Schäfer J, Kraljevic M, Kettelhack C (2017) Colon perfusion patterns during colorectal resection using visible light spectroscopy. World J Surg 41:2923–2932CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Visceral, Transplant, Thoracic and Vascular SurgeryUniversity Hospital of LeipzigLeipzigGermany
  2. 2.Innovation Center Computer Assisted Surgery (ICCAS)University of LeipzigLeipzigGermany
  3. 3.Institute of Image-Guided Surgery (IHU), IRCADStrasbourgFrance

Personalised recommendations