Clinical application and technical standardization of indocyanine green (ICG) fluorescence imaging in pediatric minimally invasive surgery

  • Ciro EspositoEmail author
  • Fulvia Del Conte
  • Mariapina Cerulo
  • Francesca Gargiulo
  • Serena Izzo
  • Giovanni Esposito
  • Maria Immacolata Spagnuolo
  • Maria Escolino
Original Article



We reported our preliminary experience using ICG fluorescence in pediatric minimally invasive surgery (MIS) with the aim to standardize indications, dose, timing, and modality of administration of ICG according to different organs.


ICG technology was adopted in 46 MIS procedures performed in our unit over the last 18 months: 30 left varicocele repairs; 5 cholecystectomies in obese adolescents; 3 tumor excisions; 3 nephrectomies; 2 partial nephrectomies; 3 lymphoma excisions. ICG solution was injected intravenously in all cases except for varicocelectomy in which it was injected into the testis. The ICG injection was performed intra-operatively in all cases except for cholecystectomy in which it was injected 18 h prior to the procedure.


All procedures were completed laparoscopically without conversions or intra-operative complications. No adverse or allergic reactions to ICG were reported.


Our preliminary experience showed that ICG fluorescence is a safe, useful, and versatile technique to adopt in pediatric MIS to achieve a better identification of anatomy and an easier surgical dissection or resection in challenging cases. Currently, the main indications are varicocelectomy, difficult cholecystectomy, tumor excision, nephrectomy, and partial nephrectomy. The main limitation is the needing of a special equipment to use ICG technology.


Indocyanine green Fluorescence Technology Children Laparoscopy MIS 


Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflict of interest or financial ties to disclose.

Ethical approval

All procedures performed in this study involving human participants were in accordance with Federico II University research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Kunert W, Storz P, Muller S, Axt S, Kirschniak A (2013) 3D in laparoscopy: state of the art. Chirurg 84:202–207. Google Scholar
  2. 2.
    Honeck P, Wendt-Nordahl G, Rassweiler J, Knoll T (2012) Three-dimensional laparoscopic imaging improves surgical performance on standardized ex vivo laparoscopic tasks. J Endourol 26:1085–1088. Google Scholar
  3. 3.
    Mordon S, Devoisselle JM, Soulie-Begu S, Desmettre T (1998) Indocyanine green; physiochemical factors affecting its fluorescence in vivo. Microvasc Res 55:146–152. Google Scholar
  4. 4.
    Alander JT, Kaartinen I, Laakso A, Patila T, Spillmann T, Tuchin VV, Venermo M, Valisuo P (2012) A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging 2012:940585. Google Scholar
  5. 5.
    Brooker LG (1955) Some recent developments in the chemistry of photographic sensitizing dyes. Experientia Suppl 2:229–257Google Scholar
  6. 6.
    Verbeek FP, Schaafsma BE, Tummers QR, van Der Vorst JR, van Der Made WJ, Baeten CI, Bonsing BA, Frangioni JV, van De Velde CJ, Vahrmeijer AL, Swijnenburg RJ (2014) Optimization of near-infrared fluorescence cholangiography for open and laparoscopic surgery. Surg Endosc 28(4):1076–1082. Google Scholar
  7. 7.
    Baillif S, Wolff B, Paoli V, Gastaud P, Mauget-Faysse M (2011) Retinal fluorescein and indocyanine green angiography and spectral-domain optical coherence tomography findings in acute retinal pigment epitheliitis. Retina 31(6):1156–1163. Google Scholar
  8. 8.
    Reuthebuch O, Haussler A, Genoni M, Tavakoli R, Odavic D, Kadner A, Turina M (2004) Novadaq SPY: intraoperative quality assessment in off-pump coronary artery by-pass grafting. Chest 125(2):418–424Google Scholar
  9. 9.
    Sheng QS, Lang R, He Q, Yang YJ, Zhao DF, Chen DF (2009) Indocyanine green clearance test and model for end-stage liver disease score of patients with liver cirrhosis. Hepatobiliary Pancreat Dis Int 8(1):46–49Google Scholar
  10. 10.
    Fox IJ, Brooker LG, Heseltine DW, Essex HE, Wood EH (1957) A tricarbocyanine dye for continuous recording of dilution curves in whole blood independent of variations in blood oxygen saturation. Proc Staff Meet Mayo Clin 32(18):478–484Google Scholar
  11. 11.
    Tanaka E, Choi HS, Fujii H, Bawendi MG, Frangioni JV (2006) Image-guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping. Ann Surg Oncol 13(12):1671–1681. Google Scholar
  12. 12.
    Tajima Y, Murakami M, Yamazaki K, Masuda Y, Kato M, Sato A, Goto S, Otsuka K, Kato T, Kusano M (2010) Sentinel node mapping guided by indocyanine green fluorescence imaging during laparoscopic surgery in gastric cancer. Ann Surg Oncol 17(7):1787–1793. Google Scholar
  13. 13.
    Korn JM, Tellez-Diaz A, Bartz-Kurycki M, Gastman B (2014) Indocyanine green SPY elite-assisted sentinel lymph node biopsy in cutaneous melanoma. Plast Reconstr Surg 133(4):914–922. Google Scholar
  14. 14.
    Kusano M, Tajima Y, Yamazaki K, Kato M, Watanabe M, Miwa M (2008) Sentinel node mapping guided by indocyanine green fluorescence imaging: a new method for sentinel node navigation surgery in gastrointestinal cancer. Dig Surg 25(2):103–108. Google Scholar
  15. 15.
    Hutteman M, Mieog JS, Van Der Vorst JR, Liefers GJ, Putter H, Lowik CW, Frangioni JV, van De Velde CJ, Vahrmeijer AL (2011) Randomized, double-blind comparison of indocyanine green with or without albumin premixing for near-infrared fluorescence imaging of sentinel lymph nodes in breast cancer patients. Breast Cancer Res Treat 127(1):163–170. Google Scholar
  16. 16.
    Schaafsma BE, Mieog JS, Hutteman M, van Der Vorst JR, Kuppen PJ, Lowik CW, Frangioni JV, van De Velde CV, Vahrmeijer AL (2011) The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol 104(3):323–332. Google Scholar
  17. 17.
    Boni L, David G, Mangano A, Dionigi G, Rausei S, Spampatti S, Cassinotti E, Fingerhut A (2015) Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery. Surg Endosc 29:2046–2055. Google Scholar
  18. 18.
    Pesce A, Piccolo G, La Greca G, Puleo S (2015) Utility of fluorescent cholangiography during laparoscopic cholecystectomy: a systematic review. World J Gastroenterol 21(25):7877–7883. Google Scholar
  19. 19.
    Daams F, Wu Z, Lahaye MJ, Jeekel J, Lange JF (2014) Prediction and diagnosis of colorectal anastomotic leakage: a systematic review of literature. World J Gastrointest Surg 6(2):14–26. Google Scholar
  20. 20.
    Daskalaki D, Fernandes E, Wang X, Bianco FM, Elli EF, Ayloo S, Masrur M, Milone L, Giulianotti PC (2014) Indocyanine green (ICG) fluorescent cholangiography during robotic cholecystectomy: results of 184 consecutive cases in a single institution. Surg Innov 21(6):615–621. Google Scholar
  21. 21.
    Cahill RA, Anderson M, Wang LM, Lindsey I, Cunning-Ham C, Mortensen NJ (2012) Near-infrared (NIR) laparoscopy for intraoperative lymphatic road-mapping and sentinel node identification during definitive surgical resection of early-stage colorectal neoplasia. Surg Endosc 26(1):197–204. Google Scholar
  22. 22.
    Pesce A, Portale TR, Minutolo V, Scilletta R, Li Destri G, Puleo S (2012) Bile duct injury during laparoscopic cholecystectomy without intraoperative cholangiography: a retrospective study on 1100 selected patients. Dig Surg 29:310–314. Google Scholar
  23. 23.
    Flum DR, Dellinger EP, Cheadle A, Chan L, Koepsell T (2003) Intraoperative cholangiography and risk of common bile duct injury during cholecystectomy. JAMA 289:1639–1644. Google Scholar
  24. 24.
    Ishizawa T, Bandai Y, Ijichi M, Kaneko J, Hasegawa K, Kokudo N (2010) Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br J Surg 97(9):1369–1377. Google Scholar
  25. 25.
    Ishizawa T, Tamura S, Masuda K, Aoki T, Hasegawa K, Imamura H, Beck Y, Kokudo N (2009) Intraoperative fluorescent cholangiography using indocyanine green: a biliary road map for safe surgery. J Am Coll Surg 208(1):e1–e4. Google Scholar
  26. 26.
    Esposito C, Escolino M, Castagnetti M, Cerulo M, Settimi A, Cortese G, Turrà F, Iannazzone M, Izzo S, Servillo G (2018) Two decades of experience with laparoscopic varicocele repair in children: standardizing the technique. J Pediatr Urol 14(1):10.e1–10.e7. Google Scholar
  27. 27.
    Esposito C, Turrà F, Del Conte F, Izzo S, Gargiulo F, Farina A, Severino G, Cerulo M, Escolino M (2019) Indocyanine green fluorescence lymphography: a new technique to perform lymphatic sparing laparoscopic palomo varicocelectomy in children. J Laparoendosc Adv Surg Tech A 1:2–3. Google Scholar
  28. 28.
    Kudszus S, Roesel C, Schachtrupp A, Hoer JJ (2010) Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbecks Arch Surg 395:1025–1030. Google Scholar
  29. 29.
    Jafari MD, Lee KH, Halabi WJ, Mills SD, Carmichale JC, Stamos MJ, Pigazzi A (2013) The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg Endosc 27:3003–3008. Google Scholar
  30. 30.
    Bates AS, Patel VR (2016) Applications of indocyanine green in robotic urology. J Robot Surg 10(4):357–359. Google Scholar
  31. 31.
    Bjurlin MA, Gan M, McClintock TR, Volpe A, Borofsky MS, Mottrie A, Stifelman MD (2014) Near-infrared fluorescence imaging: emerging applications in robotic upper urinary tract surgery. Eur Urol 65(4):793–801. Google Scholar
  32. 32.
    Yamanashi K, Okumura N, Nakazono C, Matsuoka T (2018) Surgery for intralobar pulmonary sequestration using indocyanine green fluorescence navigation: a case report. Semin Thorac Cardiovasc Surg 30(1):122–124. Google Scholar
  33. 33.
    Uramoto H, Motono N (2018) ICG easily detects not only the segmental plane, but also the course and blood distribution of the bronchial artery “case report”. Ann Med Surg (Lond) 28:28–29. Google Scholar
  34. 34.
    Piwkowski C, Gabryel P, Gąsiorowskia Ł, Zieliński P, Murawa D, Roszak M, Dyszkiewicz W (2013) Indocyanine green fluorescence in the assessment of the quality of the pedicled intercostal muscle flap: a pilot study. Eur J Cardiothorac Surg 44(1):e77–e81. Google Scholar
  35. 35.
    Yamasaki T, Tamada S, Kato M, Otoshi T, Tanaka H, Iguchi T, Nakatani T (2018) Near infrared fluorescence imaging system for laparoscopic partial nephrectomy. Can J Urol 25(6):9606–9613Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ciro Esposito
    • 1
    Email author
  • Fulvia Del Conte
    • 1
  • Mariapina Cerulo
    • 1
  • Francesca Gargiulo
    • 1
  • Serena Izzo
    • 1
  • Giovanni Esposito
    • 1
  • Maria Immacolata Spagnuolo
    • 1
  • Maria Escolino
    • 1
  1. 1.Pediatric Surgery UnitFederico II University of NaplesNaplesItaly

Personalised recommendations