Advertisement

Change in strong Eastern Pacific El Niño events dynamics in the warming climate

  • Aude CarréricEmail author
  • Boris DewitteEmail author
  • Wenju Cai
  • Antonietta Capotondi
  • Ken Takahashi
  • Sang-Wook Yeh
  • Guojian Wang
  • Virginie Guémas
Article
  • 10 Downloads

Abstract

While there is evidence that ENSO activity will increase in association with the increased vertical stratification due to global warming, the underlying mechanisms remain unclear. Here we investigate this issue using the simulations of the NCAR Community Earth System Model Large Ensemble (CESM-LE) Project focusing on strong El Niño events of the Eastern Pacific (EP) that can be associated to flooding in Northern and Central Peru. It is shown that, in the warmer climate, the duration of strong EP El Niño events peaking in boreal winter is extended by two months, which results in significantly more events peaking in February–March–April (FMA), the season when the climatological Inter-Tropical Convergence Zone is at its southernmost location. This larger persistence of strong EP events is interpreted as resulting from both a stronger recharge process and a more effective thermocline feedback in the eastern equatorial Pacific due to increased mean vertical stratification. A heat budget analysis reveals in particular that the reduction in seasonal upwelling rate is compensated by the increase in anomalous vertical temperature gradient within the surface layer, yielding an overall increase in the effectiveness of the thermocline feedback. In CESM-LE, the appearance of strong EP El Niño events peaking in FMA accounts for one-quarter of the increase in frequency of occurrence of ENSO-induced extreme precipitation events, while one-third results from weak-to-moderate El Niño events that triggers extreme precipitation events because of the warmer mean SST becoming closer to the convective threshold. In CESM-LE, both the increase in mean EP SST and the change in ENSO processes thus contribute to the increase in extreme precipitation events in the warmer climate.

Keywords

CESM-LE Extreme El Niño event Climate change Vertical stratification 

Notes

Acknowledgements

We acknowledge the CESM Large Ensemble Community Project for providing model outputs, which are available on https://www.earthsystemgrid.org. The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the US Department of Energy. B. Dewitte acknowledges supports from FONDECYT (projects 1171861 and 1190276) and the Agence Nationale de la Recherche (ANR, project ARISE). A. Capotondi was supported by the NASA Physical Oceanography Program (Award NNX15AG46G). S.-W. Yeh was supported by National Research Foundation Grant NRF-2018R1A5A1024958.

Supplementary material

382_2019_5036_MOESM1_ESM.docx (320 kb)
Supplementary material 1 (DOCX 321 kb)

References

  1. An S-I, Jin F-F (2001) Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J Clim 14:3421–3432CrossRefGoogle Scholar
  2. Arakawa A, VR Lamb (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. methods in computational physics: advances in research and applications. In: J Chang ed, Elsevier, volume 17 of general circulation models of the atmosphere, pp 173–265Google Scholar
  3. Barber RT, Chavez FP (1983) Biological consequences of El Niño. Science 222:1203–1210.  https://doi.org/10.1126/science.222.4629.1203 CrossRefGoogle Scholar
  4. Bayr T, Wengel C, Latif M, Dommenget D, Lübbecke J, Park W (2018) Error compensation of ENSO atmospheric feedbacks in climate models and its influence on simulated ENSO dynamics. Clim Dyn.  https://doi.org/10.1007/s00382-018-4575-7 CrossRefGoogle Scholar
  5. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018.  https://doi.org/10.1007/s00382-013-1783-z CrossRefGoogle Scholar
  6. Bui HX, Maloney ED (2018) Changes in Madden-Julian oscillation precipitation and wind variance under global warming. Geophys Res Lett 45:7148–7155CrossRefGoogle Scholar
  7. Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden MJ, Wu L, England MH, Wang G, Guilyardi E, Jin F-F (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Clim Change 4:111–116CrossRefGoogle Scholar
  8. Cai W, Santoso A, Wang G, Yeh S-W, An S-I, Cobb KM, Collins M, Guilyardi E, Jin F-F, Kug J-S, Lengaigne M, McPhaden MJ, Takahashi K, Timmermann A, Vecchi G, Watanabe M, Wu L (2015a) ENSO and greenhouse warming. Nature Clim Change 5:849–859.  https://doi.org/10.1038/nclimate2743 CrossRefGoogle Scholar
  9. Cai W, Wang G, Santoso A, McPhaden MJ, Wu L, Jin F-F, Timmermann A, Collins M, Vecchi G, Lengaigne M, England MH, Dommenget D, Takahashi K, Guilyardi E (2015b) Increased frequency of extreme La Niña events under greenhouse warming. Nature Clim Change 5:132–137.  https://doi.org/10.1038/nclimate2492 CrossRefGoogle Scholar
  10. Cai W, Wang G, Santoso A, Lin X, Wu L (2017) Definition of extreme El Niño and its impact on projected increase in extreme El Niño frequency. Geophys Res Lett.  https://doi.org/10.1002/2017GL075635 CrossRefGoogle Scholar
  11. Cai W, Wang G, Dewitte B, Wu L, Santoso A, Takahashi K, Yang Y, Carréric A, McPhaden MJ (2018) Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564:201–206.  https://doi.org/10.1038/s41586-018-0776-9 CrossRefGoogle Scholar
  12. Capotondi A (2013) ENSO diversity in the NCAR CCSM4 climate model. J Geophys Res Oceans 118:4755–4770.  https://doi.org/10.1002/jgrc.20335 CrossRefGoogle Scholar
  13. Capotondi A, Alexander MA, Bond NA, Curchitser EN, Scott JD (2012) Enhanced upper-ocean stratification with climate change in the CMIP3 models. J Geophys Res 117:C04031.  https://doi.org/10.1029/2011JC007409 CrossRefGoogle Scholar
  14. Capotondi A, Wittenberg AT, Newman M, Di Lorenzo E, Yu J-Y, Braconnot P, Cole J, Dewitte B, Giese B, Guilyardi E, Jin F-F, Karnauskas K, Kirtman B, Lee T, Schneider N, Xue Y, Yeh S-W (2015) Understanding ENSO diversity. Bull Am Meteor Soc 96:921–938.  https://doi.org/10.1175/BAMS-D-13-00117.1 CrossRefGoogle Scholar
  15. Carr ME, Strub PT, Thomas AC, Blanco JL (2002) Evolution of 1996–1999 La Niña and El Niño conditions off the western coast of South America: a remote sensing perspective. J Geophys Res 107(C12):3236.  https://doi.org/10.1029/2001JC001183 CrossRefGoogle Scholar
  16. Chiang JCH, Vimont DJ (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. J Clim 17:4143–4158.  https://doi.org/10.1175/JCLI4953.1 CrossRefGoogle Scholar
  17. Choi J, An S-I, Yeh S-W (2012) Decadal amplitude modulation of two types of ENSO and its relationship with the mean state. Clim Dyn 38:2631–2644.  https://doi.org/10.1007/s00382-011-1186-y CrossRefGoogle Scholar
  18. Clarke AJ (2010) Analytical theory for the quasi-steady and low-frequency equatorial ocean response to wind forcing: the “tilt” and “warm water volume” modes. J Phys Oceanogr 40:121–137.  https://doi.org/10.1175/2009JPO4263.1 CrossRefGoogle Scholar
  19. Deser C, Phillips AS, Tomas RA, Okumura YM, Alexander MA, Capotondi A, Scott JD, Kwon Y-O, Ohba M (2012) ENSO and pacific decadal variability in the community climate system model version 4. J Clim 25:2622–2651.  https://doi.org/10.1175/JCLI-D-11-00301.1 CrossRefGoogle Scholar
  20. Dewitte B (2000) Sensitivity of an intermediate ocean-atmosphere coupled model of the tropical Pacific to its oceanic vertical structure. J Clim 13:2363–2388.  https://doi.org/10.1175/1520-0442(2000)013%3c2363:SOAIOA%3e2.0.CO;2 CrossRefGoogle Scholar
  21. Dewitte B, Takahashi K (2017) Diversity of moderate El Niño events evolution: role of air–sea interactions in the eastern tropical Pacific. Clim Dyn.  https://doi.org/10.1007/s00382-017-4051-9 CrossRefGoogle Scholar
  22. Dewitte B, Reverdin G, Maes C (1999) Vertical structure of an OGCM simulation of the equatorial Pacific Ocean in 1985–1994. J Phys Oceanogr 29(7):1542–1570CrossRefGoogle Scholar
  23. Dewitte B, Cibot C, Périgaud C, An S-I, Terray L (2007) Interaction between near-annual and ENSO modes in a CGCM simulation: role of the equatorial background mean state. J Clim 20:1035–1052.  https://doi.org/10.1175/JCLI4060.1 CrossRefGoogle Scholar
  24. Dewitte B, Thual S, Yeh S-W, An S-I, Moon B-K, Giese BS (2009) Low-frequency variability of temperature in the vicinity of the equatorial pacific thermocline in SODA: role of equatorial wave dynamics and ENSO asymmetry. J Clim 22:5783–5795.  https://doi.org/10.1175/2009JCLI2764.1 CrossRefGoogle Scholar
  25. Dewitte B, Choi J, An S-I, Thual S (2012) Vertical structure variability and equatorial waves during central Pacific and eastern Pacific El Niños in a coupled general circulation model. Clim Dyn 38:2275–2289.  https://doi.org/10.1007/s00382-011-1215-x CrossRefGoogle Scholar
  26. DiNezio PN, Deser C (2014) Nonlinear Controls on the persistence of La Niña. J Clim 27:7335–7355.  https://doi.org/10.1175/JCLI-D-14-00033.1 CrossRefGoogle Scholar
  27. DiNezio PN, Clement AC, Vecchi GA, Soden BJ, Kirtman BP, Lee SK (2009) Climate response of the equatorial pacific to global warming. J Clim 22:4873–4892.  https://doi.org/10.1175/2009JCLI2982.1 CrossRefGoogle Scholar
  28. Dommenget D, Yu Y (2017) The effects of remote SST forcings on ENSO dynamics, variability and diversity. Clim Dyn 49:2605–2624.  https://doi.org/10.1007/s00382-016-3472-1 CrossRefGoogle Scholar
  29. Dommenget D, Bayr T, Frauen C (2013) Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Clim Dyn 40:2825–2847.  https://doi.org/10.1007/s00382-012-1475-0 CrossRefGoogle Scholar
  30. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang Z-L, Zhang M (2011) The community climate system model version 4. J Clim 24:4973–4991.  https://doi.org/10.1175/2011JCLI4083.1 CrossRefGoogle Scholar
  31. Graham FS, Wittenberg AT, Brown JN, Marsland SJ, Holbrook NJ (2017) Understanding the double peaked El Niño in coupled GCMs. Clim Dyn 48:2045–2063.  https://doi.org/10.1007/s00382-016-3189-1 CrossRefGoogle Scholar
  32. Ham Y-G, Kug J-S (2012) How well do current climate models simulate two types of El Niño? Clim Dyn 39:383–398.  https://doi.org/10.1007/s00382-011-1157-3 CrossRefGoogle Scholar
  33. Hunke EC, Lipscomb W (2010) CICE: the Los Alamos sea ice model documentation and software user’s manual version 4.0 LA-CC-06-012. In: Tech. Rep. LA-CC-06-012Google Scholar
  34. Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, Kushner PJ, Lamarque J-F, Large WG, Lawrence D, Lindsay K, Lipscomb WH, Long MC, Mahowald N, Marsh DR, Neale RB, Rasch P, Vavrus S, Vertenstein M, Bader D, Collins WD, Hack JJ, Kiehl J, Marshall S (2013) The community earth system model: a framework for collaborative research. Bull Am Meteor Soc 94:1339–1360.  https://doi.org/10.1175/BAMS-D-12-00121.1 CrossRefGoogle Scholar
  35. Hwang Y-T, Frierson DMW (2013) Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. PNAS.  https://doi.org/10.1073/pnas.1213302110 CrossRefGoogle Scholar
  36. Izumo T, Lengaigne M, Vialard J, Suresh I, Planton Y (2018) On the physical interpretation of the lead relation between Warm Water Volume and the El Niño Southern Oscillation. Clim Dyn.  https://doi.org/10.1007/s00382-018-4313-1 CrossRefGoogle Scholar
  37. Jin F-F (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829.  https://doi.org/10.1175/1520-0469(1997)054%3c0811:AEORPF%3e2.0.CO;2 CrossRefGoogle Scholar
  38. Jin F-F, An SI, Timmermann A, Zhao J (2003) Strong El Niño events and nonlinear dynamical heating. Geophys Res Lett 30:20-1.  https://doi.org/10.1029/2002gl016356 CrossRefGoogle Scholar
  39. Johnson NC, Xie S-P (2010) Changes in the sea surface temperature threshold for tropical convection. Nat Geosci 3:842–845.  https://doi.org/10.1038/ngeo1008 CrossRefGoogle Scholar
  40. Karamperidou C, Jin F-F, Conroy JL (2017) The importance of ENSO nonlinearities in tropical pacific response to external forcing. Clim Dyn 49:2695–2704.  https://doi.org/10.1007/s00382-016-3475-y CrossRefGoogle Scholar
  41. Kay JE, Deser C, Phillips A, Mai A, Hannay C, Strand G, Arblaster JM, Bates SC, Danabasoglu G, Edwards J, Holland M, Kushner P, Lamarque J-F, Lawrence D, Lindsay K, Middleton A, Munoz E, Neale R, Oleson K, Polvani L, Vertenstein M (2015) The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteor Soc 96:1333–1349.  https://doi.org/10.1175/BAMS-D-13-00255.1 CrossRefGoogle Scholar
  42. Kug J-S, Choi J, An S-I, Jin F-F, Wittenberg AT (2010) Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J Clim 23:1226–1239.  https://doi.org/10.1175/2009JCLI3293.1 CrossRefGoogle Scholar
  43. Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett.  https://doi.org/10.1029/2010GL044007 CrossRefGoogle Scholar
  44. Lengaigne M, Hausmann U, Madec G, Menkes C, Vialard J, Molines JM (2012) Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: diabatic versus adiabatic processes. Clim Dyn 38:1031–1046.  https://doi.org/10.1007/s00382-011-1051-z CrossRefGoogle Scholar
  45. Li G, Xie S-P (2013) Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial pacific cold tongue and double ITCZ problems. J Clim 27:1765–1780.  https://doi.org/10.1175/JCLI-D-13-00337.1 CrossRefGoogle Scholar
  46. Li G, Xie S-P, Du Y, Luo Y (2016) Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: the warming pattern in CMIP5 multi-model ensemble. Clim Dyn 47:3817–3831.  https://doi.org/10.1007/s00382-016-3043-5 CrossRefGoogle Scholar
  47. Liguori G, Di Lorenzo E (2018) Meridional modes and increasing pacific decadal variability under anthropogenic forcing. Geophys Res Lett 45:983–991.  https://doi.org/10.1002/2017GL076548 CrossRefGoogle Scholar
  48. Maloney ED, Adames AF, Bui HX (2019) Madden-Julian oscillation changes under anthropogenic warming. Nature Clim Change 9(1):26–33.  https://doi.org/10.1038/s41558-018-0331-6 CrossRefGoogle Scholar
  49. Matveeva T, Gushchina D, Dewitte B (2018) The seasonal relationship between intraseasonal tropical variability and ENSO in CMIP5. Geosci Model Dev 11:2373–2392.  https://doi.org/10.5194/gmd-11-2373-2018 CrossRefGoogle Scholar
  50. McGregor S, Timmermann A, Jin F-F, Kessler WS (2016) Charging El Niño events with off-equatorial wind bursts. Clim Dyn 47:1111.  https://doi.org/10.1007/s00382-015-2891-8 CrossRefGoogle Scholar
  51. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1740–1745.  https://doi.org/10.1126/science.1132588 CrossRefGoogle Scholar
  52. McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett.  https://doi.org/10.1029/2011GL048275 CrossRefGoogle Scholar
  53. Meehl GA, Boer GJ, Covey C, Latif M, Stouffer RJ (2000) The coupled model intercomparison project (CMIP). Bull Am Meteor Soc 81:313–318CrossRefGoogle Scholar
  54. Meehl GA, Washington WM, Arblaster JM, Hu A, Teng H, Kay JE, Gettelman A, Lawrence DM, Sanderson BM, Strand WG (2013) Climate change projections in CESM1(CAM5) compared to CCSM4. J Clim 26:6287–6308.  https://doi.org/10.1175/JCLI-D-12-00572.1 CrossRefGoogle Scholar
  55. Neske S, McGregor S (2018) Understanding the warm water volume precursor of ENSO events and its interdecadal variation. Geophys Res Lett.  https://doi.org/10.1002/2017GL076439 CrossRefGoogle Scholar
  56. Oleson W, Lawrence M, Bonan B, Flanner G, Kluzek E, Lawrence J, Levis S, Swenson C, Thornton E, Dai A, Decker M, Dickinson R, Feddema J, Heald L, Hoffman F, Lamarque J-F, Mahowald N, Niu G-Y, Qian T, Randerson J, Running S, Sakaguchi K, Slater A, Stockli R, Wang A, Yang Z-L, Zeng X, Zeng X (2010) Technical description of version 4.0 of the community land model (CLM).  https://doi.org/10.5065/d6fb50wz
  57. Philander SGH (1978) Forced oceanic waves. Rev Geophys 16:15–46.  https://doi.org/10.1029/RG016i001p00015 CrossRefGoogle Scholar
  58. Power S, Delage F, Chung C, Kociuba G, Keay K (2013) Robust twenty-first-century projections of El Niño and related precipitation variability. Nature 502:541–545.  https://doi.org/10.1038/nature12580 CrossRefGoogle Scholar
  59. Rayner NA (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407.  https://doi.org/10.1029/2002JD002670 CrossRefGoogle Scholar
  60. Ren H-L, Jin F-F (2011) Niño indices for two types of ENSO. Geophys Res Lett.  https://doi.org/10.1029/2010GL046031 CrossRefGoogle Scholar
  61. Richter I (2015) Climate model biases in the eastern tropical oceans: causes, impacts and ways forward. Wiley Interdiscipl Rev Clim Change 6:345–358.  https://doi.org/10.1002/wcc.338 CrossRefGoogle Scholar
  62. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern oscillation. Mon Weather Rev 115:1606–1626.  https://doi.org/10.1175/1520-0493(1987)115%3c1606:GARSPP%3e2.0.CO;2 CrossRefGoogle Scholar
  63. Santoso A, McGregor S, Jin F-F, Cai W, England MH, An S-I, McPhaden MJ, Guilyardi E (2013) Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature 504:126–130.  https://doi.org/10.1038/nature12683 CrossRefGoogle Scholar
  64. Smith R, Jones P, Briegleb B, Bryan F, Danabasoglu G, Dennis J, Dukowicz J, Eden C, Fox-Kemper B, Gent P et al (2010) The parallel ocean program (POP) reference manual ocean component of the community climate system model (CCSM) and community earth system model (CESM). In: Los Alamos National Laboratory Tech. Rep. LAUR-10-01853, vol 141, pp 1–140Google Scholar
  65. Stein K, Schneider N, Timmermann A, Jin F-F (2010) Seasonal synchronization of ENSO events in a linear stochastic model. J Clim 23:5629–5643.  https://doi.org/10.1175/2010JCLI3292.1 CrossRefGoogle Scholar
  66. Stevenson S, Capotondi A, Fasullo J, Otto-Bliesner B (2017) Forced changes to twentieth century ENSO diversity in a last Millennium context. Clim Dyn.  https://doi.org/10.1007/s00382-017-3573-5 CrossRefGoogle Scholar
  67. Takahashi K, Dewitte B (2016) Strong and moderate nonlinear El Niño regimes. Clim Dyn 46:1627–1645.  https://doi.org/10.1007/s00382-015-2665-3 CrossRefGoogle Scholar
  68. Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett.  https://doi.org/10.1029/2011GL047364 CrossRefGoogle Scholar
  69. Takahashi K, Karamperidou C, Dewitte B (2018) A theoretical model of strong and moderate El Niño regimes. Clim Dyn.  https://doi.org/10.1007/s00382-018-4100-z CrossRefGoogle Scholar
  70. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93:485–498.  https://doi.org/10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  71. Thual S, Dewitte B, An S-I, Ayoub N (2011) Sensitivity of ENSO to stratification in a recharge-discharge conceptual model. J Clim 24:4332–4349.  https://doi.org/10.1175/2011JCLI4148.1 CrossRefGoogle Scholar
  72. Thual S, Dewitte B, An S-I, Illig S, Ayoub N (2013) Influence of recent stratification changes on ENSO stability in a conceptual model of the equatorial pacific. J Clim 26:4790–4802.  https://doi.org/10.1175/JCLI-D-12-00363.1 CrossRefGoogle Scholar
  73. Trenberth KE, Stepaniak DP (2001) Indices of el Niño evolution. J Clim 14:1697–1701CrossRefGoogle Scholar
  74. Vecchi GA, Harrison DE (2006) The Termination of the 1997–98 El Niño. Part I: mechanisms of oceanic change. J Clim 19:2633–2646.  https://doi.org/10.1175/JCLI3776.1 CrossRefGoogle Scholar
  75. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340.  https://doi.org/10.1175/JCLI4258.1 CrossRefGoogle Scholar
  76. Wittenberg AT, Rosati A, Lau N-C, Ploshay JJ (2006) GFDL’s CM2 global coupled climate models. Part III: tropical pacific climate and ENSO. J Clim 19:698–722.  https://doi.org/10.1175/JCLI3631.1 CrossRefGoogle Scholar
  77. Xie S-P, Peng Q, Kamae Y, Zheng X-T, Tokinaga H, Wang D (2018) Eastern pacific ITCZ dipole and ENSO diversity. J Clim 31:4449–4462.  https://doi.org/10.1175/JCLI-D-17-0905.1 CrossRefGoogle Scholar
  78. Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009a) El Niño in a changing climate. Nature 461:511–514.  https://doi.org/10.1038/nature08316 CrossRefGoogle Scholar
  79. Yeh S-W, Yim BY, Noh Y, Dewitte B (2009b) Changes in mixed layer depth under climate change projections in two CGCMs. Clim Dyn 33:199–213.  https://doi.org/10.1007/s00382-009-0530-y CrossRefGoogle Scholar
  80. Yeh S-W, Dewitte B, Yim BY, Noh Y (2010) Role of the upper ocean structure in the response of ENSO-like SST variability to global warming. Clim Dyn 35:355–369.  https://doi.org/10.1007/s00382-010-0849-4 CrossRefGoogle Scholar
  81. Yeh S-W, Cai W, Min S-K, McPhaden MJ, Dommenget D, Dewitte B, Collins M, Ashok K, An S-I, Yim B-Y, Kug J-S (2018) ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev Geophys 56:185–206.  https://doi.org/10.1002/2017RG000568 CrossRefGoogle Scholar
  82. Zebiak SE, Cane MA (1987) A model El Niño-southern oscillation. Mon Weather Rev 115:2262–2278.  https://doi.org/10.1175/1520-0493(1987)115%3c2262:AMENO%3e2.0.CO;2 CrossRefGoogle Scholar
  83. Zelle H, Appeldoorn G, Burgers G, van Oldenborgh GJ (2004) The Relationship between sea surface temperature and thermocline depth in the eastern equatorial pacific. J Phys Oceanogr 34:643–655.  https://doi.org/10.1175/2523.1 CrossRefGoogle Scholar
  84. Zheng Y, Lin J-L, Shinoda T (2012) The equatorial Pacific cold tongue simulated by IPCC AR4 coupled GCMs: upper ocean heat budget and feedback analysis. J Geophys Res 117:C05024.  https://doi.org/10.1029/2011JC007746 CrossRefGoogle Scholar
  85. Zheng X-T, Hui C, Yeh S-W (2018) Response of ENSO amplitude to global warming in CESM large ensemble: uncertainty due to internal variability. Clim Dyn 50:4019.  https://doi.org/10.1007/s00382-017-3859-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPSToulouseFrance
  2. 2.Barcelona Supercomputing Center (BSC)BarcelonaSpain
  3. 3.Centro de Estudios Avanzados en Zonas Áridas (CEAZA)La SerenaChile
  4. 4.Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
  5. 5.Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI)CoquimboChile
  6. 6.Key Laboratory of Physical Oceanography, Institute for Advanced Ocean StudiesOcean University of China and Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  7. 7.Centre for Southern Hemisphere Oceans Research (CSHOR), CSIRO Oceans and AtmosphereHobartAustralia
  8. 8.Cooperative Institute for Research in Environmental ScienceUniversity of ColoradoBoulderUSA
  9. 9.Physical Sciences DivisionNOAA Earth System Research LaboratoryBoulderUSA
  10. 10.Servicio Nacional de Meteorología e Hidrología del Perú—SENAMHILimaPeru
  11. 11.Department of Marine Sciences and Convergent TechnologyHanyang UniversityAnsanSouth Korea
  12. 12.CNRM UMR 3589, Météo-France, CNRSToulouseFrance

Personalised recommendations