An inter-basin teleconnection from the North Atlantic to the subarctic North Pacific at multidecadal time scales

  • Zhanqiu Gong
  • Cheng SunEmail author
  • Jianping Li
  • Juan Feng
  • Fei Xie
  • Ruiqiang Ding
  • Yun Yang
  • Jiaqing Xue


Observational evidence suggests that the sub-arctic North Pacific (SANP; 45°–60° N, 155° E–165° W) sea surface temperature (SST) shows pronounced multidecadal variability, which cannot be explained by the Pacific Decadal Oscillation (PDO). Here, we find that the SANP SST multidecadal variability is closely linked to the remote Atlantic Multidecadal Oscillation (AMO), indicating a multidecadal inter-basin teleconnection. The teleconnection can be well reproduced in a set of Atlantic Pacemaker experiments. An atmospheric bridge mechanism for the teleconnection is proposed by analyzing both observations and simulation data. The AMO warm phase generates anomalous ascent and upper-level divergence over the North Atlantic. The upper-level outflows converge towards the subarctic North Pacific, leading to compensating subsidence along with anomalous high pressure there. The enhanced adiabatic descent causes anomalous warming and moistening of the lower troposphere above the SANP basin and increases the downwelling longwave radiation. The warming of the SANP SST is further induced and amplified due to water vapor-longwave radiation-SST positive feedback. The anomalous high also weakens the climatological cyclonic flow of Aleutian low and suppresses the turbulent heat release from ocean to atmosphere, contributing to the SANP SST warming. Our findings suggest that the AMO plays a crucial role in the subarctic North Pacific SST multidecadal variability.


Inter-basin teleconnection Atlantic Multidecadal Oscillation Sub-arctic North Pacific Multidecadal variability 



The authors wish to thank the anonymous reviewers for their constructive comments that significantly improved the quality of this paper. This work was jointly supported by the National Natural Science Foundation of China (41775038, 41975082, and 41790474), the National Program on Global Change and Air–Sea Interaction (GASI‐IPOVAI‐03 and GASI‐IPOVAI‐06) and the National Key Research and Development Plan (2016YFA0601801). C.S. is supported by the State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences (Project LTO1801).

Supplementary material

382_2019_5031_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1350 kb)


  1. Bromirski PD, Miller AJ, Flick RE, Auad G (2011) Dynamical suppression of sea level rise along the Pacific coast of North America: indications for imminent acceleration. J Geophys Res 116:C07005. CrossRefGoogle Scholar
  2. Chhak K, Di Lorenzo E (2007) Decadal variations in the California Current upwelling cells. Geophys Res Lett 314:L14604. CrossRefGoogle Scholar
  3. Chylek P, Folland CK, Lesins G, Dubey MK, Wang M (2009) Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophys Res Lett 36:L14801. CrossRefGoogle Scholar
  4. Clement AC, Burgman R, Norris JR (2009) Observational and model evidence for positive low-level cloud feedback. Science 325(5939):460–464CrossRefGoogle Scholar
  5. Danielson S, Curchitser E, Hedstrom K, Weingartner T, Stabeno P (2011) On ocean and sea ice modes of variability in the Bering Sea. J Geophys Res Oceans 116:24CrossRefGoogle Scholar
  6. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676CrossRefGoogle Scholar
  7. Deser C, Alexander MA, Timlin MS (1999) Evidence for a wind-driven intensification of the Kuroshio current extension from the 1970s to the 1980s. J Clim 12:1697–1706CrossRefGoogle Scholar
  8. Di Lorenzo E, Schneider N, Cobb KM, Chhak K, Franks PJS, Miller AJ, McWilliams JC, Bograd SJ, Arango H, Curchister E, Powell TM, Rivere P (2008) North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys Res Lett 35:L08607. CrossRefGoogle Scholar
  9. Ding QH, Schweiger A, L’Heureux M, Battisti DS, Po-Chedley S, Nathaniel CJ, Blanchard-Wrigglesworth E, Harnos K, Zhang Q, Eastman R, Steig EJ (2017) Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat Clim Change 7:289–295. CrossRefGoogle Scholar
  10. d’Orgeville M, Peltier WR (2007) On the Pacific decadal oscillation and the Atlantic multidecadal oscillation: might they be related? Geophys Res Lett 34(23):L23705. CrossRefGoogle Scholar
  11. Enfield DB, Cid-Serrano L (2009) Secular and multidecadal warmings in the North Atlantic and their relationships with major hurricane activity. Int J Climatol 30:174–184Google Scholar
  12. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080CrossRefGoogle Scholar
  13. Folland CK, Rayner NA, Brown SJ, Smith TM, Shen SSP, Parker DE, Macadam I, Jones PD, Jones RN, Nicholls N, Sexton DMH (2001) Global temperature change and its uncertainties since 1861. Geophys Res Lett 28:2621–2624CrossRefGoogle Scholar
  14. Frankcombe LM, England MH (2018) On the choice of ensemble mean for estimating the forced signal in the presence of internal variability. J Clim 31:5681–5693CrossRefGoogle Scholar
  15. Frankcombe LM, England MH, Mann ME, Steinman BA (2015) Separating internal variability from the externally forced climate response. J Clim 28(20):8184–8202. CrossRefGoogle Scholar
  16. Grunseich G, Wang B (2016) Arctic sea ice patterns driven by the Asian summer monsoon. J Clim 29:9097–9112CrossRefGoogle Scholar
  17. Hartmann B, Wendler G (2005) The significance of the 1976 Pacific climate shift in the climatology of Alaska. J Clim 18:4824–4839CrossRefGoogle Scholar
  18. Hetzinger S, Halfar J, Mecking JV, Keenlyside NS, Kronz A, Steneck RS, Adey WH, Lebednik PA (2011) Marine proxy evidence linking decadal North Pacific and Atlantic climate. Clim Dyn 39:1447–1455CrossRefGoogle Scholar
  19. Hu AX, Meehl GA (2005) Bering Strait throughflow, and the thermohaline circulation. Geophys Res Lett 32:L24610. CrossRefGoogle Scholar
  20. Hunt GL, Stabeno P, Walters G, Sinclair E, Brodeur RD, Napp JM, Bond NA (2002) Climate change and control of the southeastern Bering Sea pelagic ecosystem. Deep Sea Res Part II Top Stud Oceanogr 49:5821–5853CrossRefGoogle Scholar
  21. Hunt GL, Coyle KO, Eisner LB, Farley EV, Heintz RA, Mueter F, Napp JM, Overland JE, Ressler PH, Salo S, Stabeno PJ (2011) Climate impacts on eastern Bering Sea foodwebs: a synthesis of new data and an assessment of the Oscillating Control Hypothesis. ICES J Mar Sci 68:1230–1243CrossRefGoogle Scholar
  22. Ishii M, Shouji A, Sugimoto S, Matsumoto T (2005) Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. Int J Climatol 25:865–879CrossRefGoogle Scholar
  23. Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. J Clim 16:206–223CrossRefGoogle Scholar
  24. Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res Oceans 103:18567–18589CrossRefGoogle Scholar
  25. Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1986CrossRefGoogle Scholar
  26. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. CrossRefGoogle Scholar
  27. Kosaka Y, Xie S-P (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501(7467):403–407. CrossRefGoogle Scholar
  28. Kucharski F, Parvin A, Rodriguez-Fonseca B, Farneti R, Martin-Rey M, Polo I, Mohino E, Losada T, Mechoso CR (2016) The teleconnection of the tropical Atlantic to Indo-Pacific sea surface temperatures on inter-annual to centennial time scales: a review of recent findings. Atmosphere 7:29CrossRefGoogle Scholar
  29. Kushnir Y, Robinson WA, Bladé I, Hall NMJ, Peng S, Sutton R (2002) Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim 15:2233–2256CrossRefGoogle Scholar
  30. Li S, Bates GT (2007) Influence of the Atlantic multidecadal oscillation on the winter climate of East China. Adv Atmos Sci 24:126–135CrossRefGoogle Scholar
  31. Li C, Wu L, Wang Q, Qu L, Zhang L (2009) An intimate coupling of ocean–atmospheric interaction over the extratropical North Atlantic and Pacific. Clim Dyn 32:753–765CrossRefGoogle Scholar
  32. Li J, Sun C, Jin FF (2013) NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys Res Lett 40:5497–5502CrossRefGoogle Scholar
  33. Li XC, Xie SP, Gille ST, Yoo C (2015) Atlantic-induced pan-tropical climate change over the past three decades. Nat Clim Change 6:275–279CrossRefGoogle Scholar
  34. Liu Z, Alexander M (2007) Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev Geophys 45:RG2005. CrossRefGoogle Scholar
  35. Lopez H, Dong SF, Lee SK, Goni G (2016) Decadal modulations of interhemispheric global atmospheric circulations and monsoons by the South Atlantic meridional overturning circulation. J Clim 29:1831–1851CrossRefGoogle Scholar
  36. Lu R, Dong B, Ding H (2006) Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon. Geophys Res Lett 33(24):L24701. CrossRefGoogle Scholar
  37. Lyu K, Yu JY (2017) Climate impacts of the Atlantic Multidecadal Oscillation simulated in the CMIP5 models: a re-evaluation based on a revised index. Geophys Res Lett 44:3867–3876CrossRefGoogle Scholar
  38. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with Impacts on Salmon Production*. Bull Am Meteorol Soc 78:1069–1080CrossRefGoogle Scholar
  39. McCabe GJ, Palecki MA, Betancourt JL (2004) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc Natl Acad Sci USA 101:4136–4141CrossRefGoogle Scholar
  40. McGregor S, Timmermann A, Stuecker MF, England MH, Merrifield M, Jin FF, Chikamoto Y (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4:888–892CrossRefGoogle Scholar
  41. McGregor HV, Evans MN, Goosse H, Leduc G, Martrat B, Addison JA, Mortyn PG, Oppo DW, Seidenkrantz M-S, Sicre M-A, Phipps SJ, Selvaraj K, Thirumalai K, Filipsson HL, Ersek V (2015) Robust global ocean cooling trend for the pre-industrial Common Era. Nature Geosci 8:671–677. CrossRefGoogle Scholar
  42. Mueter FJ, Litzow MA (2008) Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol Appl 18:309–320CrossRefGoogle Scholar
  43. Okumura YM, Deser C, Hu A, Timmermann A, Xie S-P (2009) North Pacific climate response to freshwater forcing in the subarctic North Atlantic: oceanic and atmospheric pathways. J Clim 22:1424–1445CrossRefGoogle Scholar
  44. O’Reilly CH, Woollings T, Zanna L (2017) The dynamical influence of the Atlantic multidecadal oscillation on continental climate. J Clim 30:7213–7230CrossRefGoogle Scholar
  45. Peings Y, Magnusdottir G (2016) Wintertime atmospheric response to Atlantic multidecadal variability: effect of stratospheric representation and ocean–atmosphere coupling. Clim Dyn 47:1029–1047CrossRefGoogle Scholar
  46. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. CrossRefGoogle Scholar
  47. Richter I, Xie SP, Behera SK, Doi T, Masumoto Y (2014) Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim Dyn 42:171–188CrossRefGoogle Scholar
  48. Ruprich-Robert Y, Msadek R, Castruccio F, Yeager S, Delworth T, Danabasoglu G (2017) Assessing the climate impacts of the observed AMV using the GFDL CM2.1 and NCAR CESM1 global coupled models. J Clim 30:2785–2810CrossRefGoogle Scholar
  49. Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nat Clim Change 367:723–726Google Scholar
  50. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  51. Stabeno PJ, Kachel NB, Moore SE, Napp JM, Sigler M, Yamaguchi A, Zerbini AN (2012) Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem. Deep Sea Res Part II Top Stud Oceanogr 65:31–45CrossRefGoogle Scholar
  52. Stickler A, Brönnimann S, Valente MA, Bethke J, Sterin A, Jourdain S, Roucaute E, Vasquez MV, Reyes DA, Allan R, Dee D (2014) ERA-CLIM: historical surface and upper-air data for future reanalyses. Bull Am Meteorol Soc 95(9):1419–1430CrossRefGoogle Scholar
  53. Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387CrossRefGoogle Scholar
  54. Sun C, Li J, Zhao S (2015) Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation. Sci Rep 5:16853CrossRefGoogle Scholar
  55. Sun C, Li J, Ding R, Jin Z (2016) Cold season Africa–Asia multidecadal teleconnection pattern and its relation to the Atlantic multidecadal variability. Clim Dyn 48:3903–3918CrossRefGoogle Scholar
  56. Sun C, Kucharski F, Li J, Jin FF, Kang IS, Ding R (2017) Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat Commun 8:15998CrossRefGoogle Scholar
  57. Sutton RT, Dong B (2012) Atlantic Ocean influence on a shift in European climate in the 1990s. Nat Geosci 5:788–792CrossRefGoogle Scholar
  58. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118CrossRefGoogle Scholar
  59. Timmermann A, Latif M, Voss R, Grotzner A (1998) Northern hemisphere interdecadal variability: a coupled air–sea mode. J Clim 11:1906–1931CrossRefGoogle Scholar
  60. Timmermann A, Okumura Y, An S-I, Clement A, Dong B, Guilyardi E, Hu A, Jungclaus JH, Renold M, Stocker TF, Stouffer RJ, Sutton R, Xie S-P, Yin J (2007) The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J Clim 20:4899–4919CrossRefGoogle Scholar
  61. Tokinaga H, Xie SP, Mukougawa H (2017) Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proc Natl Acad Sci USA 114:6227–6232CrossRefGoogle Scholar
  62. Trenberth KE, Fasullo JT (2013) An apparent hiatus in global warming? Earth’s Future 1(1):19–32. CrossRefGoogle Scholar
  63. Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704CrossRefGoogle Scholar
  64. Wu L, Li C, Yang C, Xie S-P (2008) Global teleconnections in response to a shutdown of the Atlantic meridional overturning circulation. J Clim 21:3002–3019CrossRefGoogle Scholar
  65. Wu S, Liu Z, Zhang R, Delworth TL (2011) On the observed relationship between the Pacific Decadal Oscillation and the Atlantic Multi-decadal Oscillation. J Oceanogr 67:27–35CrossRefGoogle Scholar
  66. Zhang L (2016) The roles of external forcing and natural variability in global warming hiatuses. Clim Dyn 47(9–10):3157–3169. CrossRefGoogle Scholar
  67. Zhang R, Delworth TL (2007) Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys Res Lett 34:L23708. CrossRefGoogle Scholar
  68. Zhang L, Wang C (2013) Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J Geophys Res 118:5772–5791CrossRefGoogle Scholar
  69. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–1993. J Clim 10:1004–1020CrossRefGoogle Scholar
  70. Zhang R, Delworth TL, Sutton R, Hodson DLR, Dixon KW, Held IM, Kushnir Y, Marshall J, Ming Y, Msadek R, Robson J, Rosati AJ, Ting M, Vecchi GA (2013) Have aerosols caused the observed Atlantic multidecadal variability? J Atmos Sci 70:1135–1144CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Global Change and Earth System Science (GCESS)Beijing Normal UniversityBeijingChina
  2. 2.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of OceanographyMinistry of Natural ResourcesHangzhouChina
  3. 3.Key Laboratory of Physical Oceanography-Institute for Advanced Ocean StudiesOcean University of China and Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  4. 4.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  5. 5.Key Laboratory of Meteorological Disaster of Ministry of Education/ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/ Institute for Climate and Application Research (ICAR)Nanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations