Advertisement

How much of monthly mean precipitation variability over global land is associated with SST anomalies?

  • Zeng-Zhen HuEmail author
  • Arun Kumar
  • Bhaskar Jha
  • Boyin Huang
Article

Abstract

The role of sea surface temperature (SST) in determining the predictability of monthly mean precipitation over the global land is assessed by analyzing the Atmospheric Model Intercomparison Project (AMIP)-like simulations forced by observed SST, which provides a benchmark for the impact of SST on the precipitation. The correlations of monthly mean precipitation anomalies between the ensemble mean of the AMIP simulations and observations are dominated by positive values with maxima around 0.3–0.4 in the tropical North Africa along 15° N and northeastern Brazil. The SST forcing for the precipitation variability is mainly associated with the El Niño-Southern Oscillation (ENSO) and in the tropical Indian Ocean. Statistically, positive and negative SST anomalies associated with an ENSO cycle have a comparable influence on precipitation variability over the land. In addition to the spatial variations, the precipitation responses to SST also vary with season and decade. Pattern correlations are larger in boreal winter than in boreal summer in the Northern Hemisphere, and relatively larger in April-June and September–November in the Southern Hemisphere. The global average of correlation is lower during 1957–1980 and 2000–2018, and higher in between. The interdecadal fluctuation of the pattern correlations is coherent with the interdecadal variation of the amplitude of ENSO.

Keywords

Predictability Global land precipitation Temporal and spatial variations of the SST influence ENSO 

Notes

Acknowledgements

We appreciate the comments and suggestions of two reviewers as well as our colleagues Drs. Peitao Peng and Caihong Wen. The scientific results and conclusions, as well as any view or opinions expressed herein, are those of the authors and do not necessarily reflect the views of NWS, NOAA, or the Department of Commerce.

References

  1. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007.  https://doi.org/10.1029/2006JC003798 CrossRefGoogle Scholar
  2. Baker LH, Shaffrey LC, Sutton RT, Weisheimer A, Scaife AA (2018) An intercomparison of skill and overconfidence/underconfidence of the wintertime North Atlantic Oscillation in multimodel seasonal forecasts. Geophys Res Lett 45:7808–7817.  https://doi.org/10.1029/2018GL078838 CrossRefGoogle Scholar
  3. Barnston AG, Chelliah M, Goldenberg SB (1997) Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmos Ocean 35:367–383.  https://doi.org/10.1080/07055900.1997.9649597 CrossRefGoogle Scholar
  4. Barnston AG, Tippett MK, L’Heureux ML, Li S, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 2002–2011—Is our capability increasing? Bull Amer Meteor Soc 93(5):631–651.  https://doi.org/10.1175/BAMS-D-11-00111.1 CrossRefGoogle Scholar
  5. Brankovic C, Palmer TN (1997) Atmospheric seasonal predictability and estimates of ensemble size. Mon Wea Rev 125:859–874.  https://doi.org/10.1175/1520-0493(1997)125%3c0859:ASPAEO%3e2.0.CO;2 CrossRefGoogle Scholar
  6. Cai W et al (2019) Pantropical climate interactions. Science.  https://doi.org/10.1126/science.aav4236 CrossRefGoogle Scholar
  7. Chen M, Xie P, Janowiak JE, Arkin PA (2002) Global land precipitation: a 50-yr monthly analysis based on gauge observations. J Hydrometeor 3:249–266.  https://doi.org/10.1175/1525-7541(2002)003%3c0249:GLPAYM%3e2.0.CO;2 CrossRefGoogle Scholar
  8. Davey MK, Brookshaw A, Ineson S (2014) The probability of the impact of ENSO on precipitation and near-surface temperature. Clim Risk Manag 1:5–24.  https://doi.org/10.1016/j.crm.2013.12.002 CrossRefGoogle Scholar
  9. Davis RE (1976) Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J Phys Oceanogr 6:249–266.  https://doi.org/10.1175/1520-0485(1976)006%3c0249:POSSTA%3e2.0.CO;2 CrossRefGoogle Scholar
  10. Deser C, Simpson IR, Phillips AS, McKinnon KA (2018) How well do we know ENSO’s climate impacts over North America, and how do we evaluate models accordingly? J Clim 31:4991–5014.  https://doi.org/10.1175/JCLI-D-17-0783.1 CrossRefGoogle Scholar
  11. Dunstone N, Scaife AA, MacLachlan C et al (2018) Predictability of European winter 2016/2017. Atmos Sci Lett 19:e868.  https://doi.org/10.1002/asl.868 CrossRefGoogle Scholar
  12. Goddard L, Dilley M (2005) El Niño: Catastrophe or opportunity. J Clim 18:651–665.  https://doi.org/10.1175/JCLI-3277.1 CrossRefGoogle Scholar
  13. Hu S, Fedorov AV (2018) Cross-equatorial winds control El Niño diversity and change. Nat Clim Chang 8:798–802.  https://doi.org/10.1038/s41558-018-0248-0 CrossRefGoogle Scholar
  14. Hu Z-Z, Kumar A, Huang B, Xue Y, Wang W, Jha B (2011) Persistent atmospheric and oceanic anomalies in the North Atlantic from summer 2009 to summer 2010. J Clim 24(22):5812–5830.  https://doi.org/10.1175/2011JCLI4213.1 CrossRefGoogle Scholar
  15. Hu Z-Z, Kumar A, Ren H-L, Wang H, L’Heureux M, Jin F-F (2013) Weakened interannual variability in the tropical Pacific Ocean after 2000. J Clim 26(8):2601–2613.  https://doi.org/10.1175/JCLI-D-12-00265.1 CrossRefGoogle Scholar
  16. Hu Z-Z, Kumar A, Huang B (2016) Spatial distribution and the interdecadal change of leading modes of heat budget of the mixed-layer in the tropical Pacific and the association with ENSO. Clim Dyn 46(5–6):1753–1768.  https://doi.org/10.1007/s00382-015-2672-4 CrossRefGoogle Scholar
  17. Hu Z-Z, Kumar A, Jha B, Zhu J, Huang B (2017a) Persistence and predictions of the remarkable warm anomaly in the northeastern Pacific Ocean during 2014–2016. J Clim 30(2):689–702.  https://doi.org/10.1175/JCLI-D-16-0348.1 CrossRefGoogle Scholar
  18. Hu Z-Z, Kumar A, Huang B, Zhu J, Ren H-L (2017b) Interdecadal variations of ENSO around 1999/2000. J Meteor Res 31(1):73–81.  https://doi.org/10.1007/s13351-017-6074-x CrossRefGoogle Scholar
  19. Hu Z-Z, Kumar A, Zhu J, Huang B, Tseng Y-H, Wang X (2017c) On the shortening of the lead time of ocean warm water volume to ENSO SST since 2000. Sci Rep 7:4294.  https://doi.org/10.1038/s41598-017-04566-z CrossRefGoogle Scholar
  20. Hu Z-Z, Kumar A, Zhu J, Peng P, Huang B (2019) On the challenge for ENSO cycle prediction: an example from NCEP climate forecast system version 2. J Clim 32(1):183–194.  https://doi.org/10.1175/JCLI-D-18-0285.1 CrossRefGoogle Scholar
  21. Huang B et al (2017) Extended reconstructed sea surface temperature version 5 (ERSSTv5), upgrades, validations, and intercomparisons. J Clim 30(20):8179–8205.  https://doi.org/10.1175/JCLI-D-16-0836.1 CrossRefGoogle Scholar
  22. Huang B, Angel W, Boyer T, Cheng L, Chepurin G, Freeman E, Liu C, Zhang H (2018) Evaluating SST analyses with independent ocean profile observations. J Clim 31:5015–5030.  https://doi.org/10.1175/JCLI-D-17-0824.1 CrossRefGoogle Scholar
  23. Jia L et al (2015) Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J Clim 28:2044–2062.  https://doi.org/10.1175/JCLI-D-14-00112.1 CrossRefGoogle Scholar
  24. Ju J, Slingo JM (1995) The Asian summer monsoon and ENSO. Q J R Meteor Soc 121:1133–1168CrossRefGoogle Scholar
  25. Kayano MT, Rao VB, Moura AD (1988) Tropical circulations and the associated rainfall anomalies during two contrasting years. J Climatol 8:477–488CrossRefGoogle Scholar
  26. Kosaka Y, Chowdary JS, Xie S-P, Min Y-M, Lee J-Y (2012) Limitations of seasonal predictability for summer climate over East Asia and the Northwestern Pacific. J Clim 25:7574–7589.  https://doi.org/10.1175/JCLI-D-12-00009.1 CrossRefGoogle Scholar
  27. Kumar A, Chen M (2015) Inherent predictability, requirements on the ensemble size, and complementarit.y. Mon Wea Rev 143:3192–3203.  https://doi.org/10.1175/MWR-D-15-0022.1 CrossRefGoogle Scholar
  28. Kumar A, Chen M (2017) What is the variability in US west coast winter precipitation during strong El Niño events? Climate Dyn 49(7–8):2789–2802.  https://doi.org/10.1007/s00382-016-3485-9 CrossRefGoogle Scholar
  29. Kumar A, Hoerling MP (2000) Analysis of a conceptual model of seasonal climate variability and implications for seasonal prediction. Bull Am Meteor Soc 81:255–264.  https://doi.org/10.1175/1520-0477(2000)081%3c0255:AOACMO%3e2.3.CO;2 CrossRefGoogle Scholar
  30. Kumar A, Barnston AG, Hoerling MP (2001) Seasonal predictions, probabilistic verifications, and ensemble size. J Clim 14:1671–1676.  https://doi.org/10.1175/1520-0442(2001)014%3c1671:SPPVAE%3e2.0.CO;2 CrossRefGoogle Scholar
  31. Kumar A, Wang H, Wang W, Xue Y, Hu Z-Z (2013) Does knowing the oceanic PDO phase help predict the atmospheric anomalies in subsequent months? J Clim 26(4):1268–1285.  https://doi.org/10.1175/JCLI-D-12-00057.1 CrossRefGoogle Scholar
  32. Kumar A, Peng P, Chen M (2014) Is there a relationship between potential and actual kill? Mon Wea Rev 142:2220–2227.  https://doi.org/10.1175/MWR-D-13-00287.1 CrossRefGoogle Scholar
  33. Kumar A, Hu Z-Z, Jha B, Peng P (2017) Estimating ENSO predictability: based on multi-model hindcasts. Clim Dyn 48(1–2):39–51.  https://doi.org/10.1007/s00382-016-3060-4 CrossRefGoogle Scholar
  34. Li X, Hu Z-Z, Jiang X, Li Y, Gao Z, Yang S, Zhu J, Jha B (2016) Trend and seasonality of land precipitation in observations and CMIP5 model simulations. Int J Climatol 36(11):3781–3793.  https://doi.org/10.1002/joc.4592 CrossRefGoogle Scholar
  35. Li X, Hu Z-Z, Liang P, Zhu J (2019) Contrastive influence of ENSO and PNA on variability and predictability of North American winter precipitation. J Clim 32(19):6271–6284.  https://doi.org/10.1175/JCLI-D-19-0033.1 CrossRefGoogle Scholar
  36. Liang P, Hu Z-Z, Liu Y, Yuan X, Li X, Jiang X (2019) Challenges in predicting and simulating summer rainfall in the eastern China. Climate Dyn 52(3–4):2217–2233.  https://doi.org/10.1007/s00382-018-4256-6 CrossRefGoogle Scholar
  37. Madden RA (1976) Estimates of the natural variability of time-averaged sea-level pressure. Mon Wea Rev 104:942–952.  https://doi.org/10.1175/1520-0493(1976)104%3c0942:EOTNVO%3e2.0.CO;2 CrossRefGoogle Scholar
  38. McPhaden MJ (2012) A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys Res Lett 39:L09706.  https://doi.org/10.1029/2012GL051826 CrossRefGoogle Scholar
  39. National Research Council (2010) Assessment of intraseasonal to interannual climate prediction and predictability. The National Academies Press, Washington (ISBN-10: 0-309-15183-X) Google Scholar
  40. Nitta T (1987) Convective activities in the tropical western pacific and their impact on the Northern Hemisphere summer circulation. J Meteorol Soc Japan. Ser II 65(3):373–390CrossRefGoogle Scholar
  41. Nitta T, Hu Z-Z (1996) Summer climate variability in China and its association with 500 hPa height and tropical convection. J Meteor Soc Japan Ser II 74(4):425-445CrossRefGoogle Scholar
  42. O’Lenic EA, Unger DA, Halpert MS, Pelman KS (2008) Developments in operational long-range climate prediction at CPC. Wea Forecast 23:496–515.  https://doi.org/10.1175/2007WAF2007042.1 CrossRefGoogle Scholar
  43. Peng P, Kumar A, Barnston AG, Goddard L (2000) Simulation skills of the SST-forced global climate variability of the NCEP-MRF9 and Scripps/MPI ECHAM3 models. J Clim 13:3657–3679.  https://doi.org/10.1175/1520-0442(2000)013%3c3657:SSOTSF%3e2.0.CO;2 CrossRefGoogle Scholar
  44. Peng P, Kumar A, Halpert MS, Barnston AG (2012) An analysis of CPC’s operational 0.5-month lead seasonal outlooks. Wea Forecast 27:898–917.  https://doi.org/10.1175/WAF-D-11-00143.1 CrossRefGoogle Scholar
  45. Peng P, Barnston AG, Kumar A (2013) A comparison of skill between two versions of the NCEP Climate Forecast System (CFS) and CPC’s operational short-lead seasonal outlooks. Wea Forecast 28:445–462.  https://doi.org/10.1175/WAF-D-12-00057.1 CrossRefGoogle Scholar
  46. Quan X, Hoerling M, Whitaker J, Bates G, Xu T (2006) Diagnosing sources of U.S. seasonal forecast skill. J Clim 19:3279–3293.  https://doi.org/10.1175/JCLI3789.1 CrossRefGoogle Scholar
  47. Rayner N, Brohan P, Parker D, Folland C, Kennedy J, Vanicek M, Ansell T, Tett S (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 data set. J Clim 19(3):446–469.  https://doi.org/10.1175/JCLI3637.1 CrossRefGoogle Scholar
  48. Ren H-L, Jin F-F (2011) Niño indices for two types of ENSO. Geophys Res Lett 38:L04704.  https://doi.org/10.1029/2010GL046031 CrossRefGoogle Scholar
  49. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625.  https://doi.org/10.1175/1520-0442(2002)015%3c1609:AIISAS%3e2.0.CO;2 CrossRefGoogle Scholar
  50. Ropelewski CF, Halpert M (1987) Global and regional scale precipitation patterns associated with the El Niño-Southern Oscillation. Mon Wea Rev 115:1606–1626.  https://doi.org/10.1175/1520-0493(1987)115%3c1606:GARSPP%3e2.0.CO;2 CrossRefGoogle Scholar
  51. Saha S et al (2014) The NCEP climate forecast system version 2. J Clim 27:2185–2208.  https://doi.org/10.1175/JCLI-D-12-00823.1 CrossRefGoogle Scholar
  52. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363.  https://doi.org/10.1038/43854 CrossRefGoogle Scholar
  53. Sarachik ES, Cane MA (2010) The El Niño-Southern Oscillation Phenomenon. Cambridge University Press, LondonCrossRefGoogle Scholar
  54. Scaife AA, Smith D (2018) A signal-to-noise paradox in climate science. npj Clim Atmos Sci 1:28.  https://doi.org/10.1038/s41612-018-0038-4 CrossRefGoogle Scholar
  55. Scaife AA et al (2018) Tropical rainfall predictions from multiple seasonal forecast systems. Int J Climatol 39:974–988.  https://doi.org/10.1002/joc.5855 CrossRefGoogle Scholar
  56. Shinoda T, Alexander MA, Hendon HH (2004) Remote response of the Indian Ocean to interannual SST variations in the Tropical Pacific. J Clim 17:362–372.  https://doi.org/10.1175/1520-0442(2004)017%3c0362:RROTIO%3e2.0.CO;2 CrossRefGoogle Scholar
  57. Sun Q, Miao C, Duan Q, Ashouri H, Sorooshian S, Hsu K-L (2018) A review of global precipitation datasets: data sources, estimation, and intercomparisons. Geophs Rev 56(1):79–107.  https://doi.org/10.1002/2017RG000574 CrossRefGoogle Scholar
  58. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Wea Rev 109:784–812CrossRefGoogle Scholar
  59. Wang C (2019) Three-ocean interactions and climate variability: a review and perspective. Clim Dyn.  https://doi.org/10.1007/s00382-019-04930-x CrossRefGoogle Scholar
  60. Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536.  https://doi.org/10.1175/1520-0442(2000)013%3c1517:PEATHD%3e2.0.CO;2 CrossRefGoogle Scholar
  61. Wang W, Chen M, Kumar A (2010) An assessment of the cfs real-time seasonal forecasts. Weather Forecast 25(3):950–969CrossRefGoogle Scholar
  62. Wang B, Ding Q, Fu X, Kang I-S, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenges in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32(15):L15711.  https://doi.org/10.1029/2005GL022734 CrossRefGoogle Scholar
  63. Wu R, Kirtman BP (2005) Roles of Indian and Pacific Ocean air–sea coupling in tropical atmospheric variability. Climate Dyn 25(2–3):155–170.  https://doi.org/10.1007/s00382-005-0003-x CrossRefGoogle Scholar
  64. Wu R, Hu Z-Z, Kirtman BP (2003) Evolution of ENSO-related rainfall anomalies in East Asia. J Clim 16(22):3742–3758.  https://doi.org/10.1175/1520-0442(2003)016%3c3742:EOERAI%3e2.0.CO;2 CrossRefGoogle Scholar
  65. Yang J, Liu Q, Liu Z, Wu L, Huang F (2009) Basin mode of Indian Ocean sea surface temperature and Northern Hemisphere circumglobal teleconnection. Geophys Res Lett 36:L19705.  https://doi.org/10.1029/2009GL039559 CrossRefGoogle Scholar
  66. Yeh S-W et al (2018) ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev Geophys 56(1):185–206.  https://doi.org/10.1002/2017RG000568 CrossRefGoogle Scholar
  67. Yulaeva E, Wallace JM (1994) The signature of ENSO in global temperature and precipitation fields derived from the Microwave Sounding Unit. J Clim 7:1719–1736.  https://doi.org/10.1175/1520-0442(1994)007%3c1719:TSOEIG%3e2.0.CO;2 CrossRefGoogle Scholar
  68. Zebiak SE (1993) Air–sea interaction in the equatorial Atlantic region. J Clim 6:1567–1586.  https://doi.org/10.1175/1520-0442(1993)006%3c1567:AIITEA%3e2.0.CO;2 CrossRefGoogle Scholar
  69. Zhu J, Shukla J (2013) The role of air–sea coupling in seasonal prediction of Asia-Pacific summer monsoon rainfall. J Clim 26:5689–5697.  https://doi.org/10.1175/JCLI-D-13-00190.1 CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Climate Prediction Center, NCEP/NWS/NOAACollege ParkUSA
  2. 2.InnovimGreenbeltUSA
  3. 3.National Centers for Environmental Information (NCEI), NOAAAshevilleUSA

Personalised recommendations