Advertisement

Climate Dynamics

, Volume 53, Issue 11, pp 6785–6814 | Cite as

Simulation of mid-latitude winter storms over the North Atlantic Ocean: impact of boundary layer parameterization schemes

  • P. K. PradhanEmail author
  • Margarida L. R. Liberato
  • Vinay Kumar
  • S. Vijaya Bhaskara Rao
  • Juan Ferreira
  • Tushar Sinha
Article

Abstract

This study discusses the performance of various planetary boundary layer parameterization (PBL) schemes—the Quasi-Normal Scale Elimination (QNSE), the University of Washington Moist Turbulence (UWMT), and the Yonsei University (YSU)—for the simulation of rapidly developing North Atlantic (NA) mid-latitude winter storms. Sensitivity experiments with the three PBL schemes, YSU, QNSE, and UWMT, indicate that there are minor differences at the center of the storm while simulating the evolution of the three explosive storms Klaus (21–27 January 2009), Xynthia (25 February–03 March 2010), and Gong (16–20 January 2013). The differences are shown in terms of the central minimum pressure, 10-m wind, specific humidity, CAPE, transitional speed, boundary layer height and frictional velocity of these mid-latitude storms. One of the main result shows the capability of QNSE and UWMT PBL schemes to reproduce accurately both the cyclogenesis and explosive stage for these mid-latitude storms during the winter season, better than YSU scheme. Almost all PBL schemes show dry bias from middle to upper troposphere (600 hPa–250 hPa), while YSU scheme carries this bias at the surface boundary layer, for all simulations. Moreover, QNSE, UWMT and YMSU PBL schemes underestimate the tangential winds for these mid-latitude storms. The 24 h accumulated latent heat flux and precipitation from UWMT scheme show modified results as compared to YSU and QNSE PBL schemes. Overall results show the superiority of QNSE and UWMT PBL schemes for an accurate simulation of the explosive stage of these North Atlantic winter storms.

Keywords

Mid-latitude storms Explosive cyclogenesis Mature stage Mesoscale model WRF Planetary boundary layer scheme North Atlantic Ocean 

Notes

Acknowledgements

This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER-019524 (PTDC/AAC-CLI/121339/2010). Margarida L. R. Liberato also acknowledges funding from FCT and Portugal Horizon 2020 through project WEx-Atlantic (PTDC/CTA-MET/29233/2017). P. K. Pradhan wish to thankful to the University Grants Commission New-Delhi-India for providing financial support to carry out the research work. The authors gratefully acknowledge the NCEP/NCAR for their analysis data and WRF model code used in this study. We are also thankful to ECMWF ERA Interim reanalysis, UK Met Office, E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu), AVHRR and TRMM satellite products used in this study for the model validation. The Figures are made herewith in GrADs software are sincerely acknowledged. The authors also wish to thank three anonymous reviewers and editor for their review comments.

Supplementary material

382_2019_4962_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1293 kb)

References

  1. Anthes RA (1983) Regional models of the atmosphere in middle latitudes. Mon Weather Rev 111(6):1306–1335Google Scholar
  2. Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543Google Scholar
  3. Bengtsson L, Hodges KI, Keenlyside N (2009) Will extratropical storms intensify in a warmer climate? J Clim 22:2276–2301Google Scholar
  4. Bergeron T (1954) Reviews of morden meteorology-12: the problem of tropical hurricanes. Q J R Meteorol Soc 80:131–164Google Scholar
  5. Bougeault P, Lacarrere P (1989) Parameterization of orography-induced turbulence in a mesobeta—scale model. Mon Weather Rev 117:1872–1890Google Scholar
  6. Braun SA, Tao WK (2000) Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon Weather Rev 128(12):3941–3961Google Scholar
  7. Bretherton CS, Sungsu P (2009) A new moist turbulence parameterization in the Community Atmosphere Model. J Clim 22:3422–3448Google Scholar
  8. Buizza R, Hollingsworth A (2002) Storm prediction over Europe using the ECMWF ensemble prediction system. Meteorol Appl 9:289–305.  https://doi.org/10.1017/S1350482702003031 CrossRefGoogle Scholar
  9. Cardoso RM, Soares PMM, Miranda PMA, Belo-Pereira M (2013) WRF high resolution simulation of Iberian mean and extreme precipitation climate. Int J Climatol 33:2591–2608.  https://doi.org/10.1002/joc.3616 CrossRefGoogle Scholar
  10. Carvalho D, Rocha A, Gómez-Gesteira M, Santos C (2012) A sensitivity study of the WRF model in wind simulation for an area of high wind energy. Environ Model Softw 33:23–34Google Scholar
  11. Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geosci Model Dev 7:1247–1250.  https://doi.org/10.5194/gmd-7-1247-2014 CrossRefGoogle Scholar
  12. Chandrasekar R, Balaji C (2012) Sensitivity of tropical cyclone Jal simulations to physics parameterizations. J Earth Syst Sci 121(4):923–946Google Scholar
  13. Chen F, Dudhia J (2001) Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585Google Scholar
  14. Chou MD, Suarez MJ (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech Memo 104606:1–84Google Scholar
  15. Chou MD, Suarez MJ (1999) A solar radiation parameterization for atmospheric studies. NASA/TM-1999-104606 15:1–51Google Scholar
  16. Cohen AE, Cavallo SM, Coniglio MC, Brooks HE (2015) A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Weather Forecast 30(3):591–612Google Scholar
  17. Dasari HP, Salgado R (2015) Numerical modelling of heavy rainfall event over Madeira Island in Portugal: sensitivity to different micro physical processes. Meteorol Appl 22(1):113–127Google Scholar
  18. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kallberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597.  https://doi.org/10.1002/gj.828 CrossRefGoogle Scholar
  19. Doyle JD, Amerault C, Reynolds CA, Reinecke PA (2014) Initial condition sensitivity and predictability of a severe extratropical cyclone using a moist adjoint. Mon Weather Rev 142(1):320–342Google Scholar
  20. Emanuel KA (1986) An air-sea interaction theory for tropical storms. Part I: steady state maintenance. J Atmos Sci 43:585–604Google Scholar
  21. Emery WJ, Radebaugh M, Fowler C, Cavalieri D, Steffen K (1991) A comparison of sea ice parameters computed from advanced very high resolution radiometer and LANDSAT satellite imagery, and from airborne passive microwave radiometry. J Geophys Res 96:22075–22085Google Scholar
  22. Enz R, Zimmerli P, Schwarz S (2009) Natural catastrophes and man-made disasters in 2008: North America and Asia suffer heavy losses, Swiss Re Sigma Report No. 2, Zurich, Switzerland, pp 1–41. Available at http://www.preventionweb.net/files/8841_Sigma22009e.pdf
  23. Ferreira J, Pradhan PK, Liberato MLR (2014) Impacts of extratropical storm Stephanie assessed by a high resolution model setting. In: Book of abstracts of international conference mathematics and engineering in marine and earth problems (MEME’2014), Aveiro University, pp 92–97Google Scholar
  24. Ferreira J, Liberato MLR, Ramos Alexandre M (2017) On the relationship between atmospheric water vapour transport and extra-tropical storms development. Phys Chem Earth (A/B/C) 94:56–65.  https://doi.org/10.1016/j.pce.2016.01.001 CrossRefGoogle Scholar
  25. Fink AH, Brücher T, Ermert V, Krüger A, Pinto JG (2009) The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat Hazards Earth Syst Sci 9(2):405–423Google Scholar
  26. Galperin B, Sukoriansky S (2010) Geophysical flows with anisotropic turbulence and dispersive waves: flows with stable stratification. Ocean Dyn 60:1319.  https://doi.org/10.1007/s10236-010-0325-z CrossRefGoogle Scholar
  27. Haarsma RJ, Hazeleger W, Severijns C, De Vries H, Sterl A, Bintanja R, Van Oldenborgh GJ, van den Brink HW (2013) More hurricanes to hit western Europe due to global warming. Geophys Res Lett 40(9):1783–1788Google Scholar
  28. Hastings DA, Emery WJ (1992) The advanced very high resolution radiometer (AVHRR)-A brief reference guide. Photogram Eng Remote Sens 58:1183–1188Google Scholar
  29. Haylock MR (2011) European extra-tropical storm damage risk from a multi-model ensemble of dynamically-downscaled global climate models. Nat Hazards Earth Syst Sci 11(10):2847Google Scholar
  30. Haylock MR, Hofstra N, Klein Tank AM, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113(D20)Google Scholar
  31. Hénin R, Liberato MLR, Ramos AM, Gouveia CM (2018) Assessing the use of satellite-based estimates and high-resolution precipitation datasets for the study of extreme precipitation events over the Iberian Peninsula. Water 10(11):1–19.  https://doi.org/10.3390/w10111688 CrossRefGoogle Scholar
  32. Heo KY, Lee J-W, Ha K-J, Jun K-C, Park K-S, Jae-Il K (2009) Simulation of atmospheric states for a storm surge on the west coast of Korea: model comparison between MM5, WRF and COAMPS. Nat Hazards 51:151–162Google Scholar
  33. Hewson TD, Titley HA (2010) Objective identification, typing and tracking of the complete life-cycles of cyclonic features at high spatial resolution. Meteorol Appl 17(3):355–381Google Scholar
  34. Hewson TD, Neu U (2015) Storms, windstorms and the IMILAST project. Tellus A Dyn Meteor Oceanogr 67(1):1–33Google Scholar
  35. Hong SY (2010) A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Q J R Meteoro Soc 136:1481–1496Google Scholar
  36. Hong SY, Pan HL (1996) Nonlocal boundary layer vertical diffusion in a medium–range forecast model. Mon Weather Rev 124:2322–2339Google Scholar
  37. Hong SY, Lim JO (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteorol Soc 42:129–151Google Scholar
  38. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341Google Scholar
  39. Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine Scales. J Hydrometeorol 8:38–55Google Scholar
  40. Janjić ZI (1994) The step-mountain Eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945Google Scholar
  41. Janjić ZI (2001) Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. Office Note No. 437, National Centers for Environmental Prediction, pp 1–61Google Scholar
  42. Jung T, Gulev SK, Rudeva I, Soloviov V (2006) Sensitivity of extratropical storm characteristics to horizontal resolution in the ECMWF model. Q J R Meteorol Soc 132:1839–1857Google Scholar
  43. Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181Google Scholar
  44. Kain JS, Fritsch JM, (1993) Convective parameterization for mesoscale models: the Kain Fritsch scheme. Meteorol Monogr Am Meteorol Soc pp 165–170Google Scholar
  45. Karremann MK, Liberato MLR, Ordóñez P, Pinto JG (2016) Characterization of synoptic conditions and cyclones associated with top ranking potential wind loss events over Iberia. Atmos Sci Lett 17(6):354–361Google Scholar
  46. Kolen B, Slomp R, Van Balen W, Terpstra T, Bottema M, Nieuwenhuis S (2010) Learning from French experiences with storm Xynthia; damages after a flood. ISBN 978-90-77051-77-1Google Scholar
  47. Kolusu SR, Marsham JH, Mulcahy J, Johnson B, Dunning C, Bush M, Spracklen DV (2015) Impacts of Amazonia biomass burning aerosols assessed from short-range weather forecasts. Atmos Chem Phys 5 15(21): 12251-12266Google Scholar
  48. Krishnamurti TN, Pattnaik S, Biswas MK, Bensman E, Kramer M, Surgi N, Kumar TV (2010) Hurricane forecasts with a mesoscale suite of models. Tellus A 62(5):633–646Google Scholar
  49. Kumar V, Pradhan PK (2019) Combination of PBL and convection schemes for explosive storms (submitted)Google Scholar
  50. Kusaka H, Kondo H, Kikegawa Y, Kimura F (2001) A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound Layer Meteorol 101:329–358Google Scholar
  51. Li X, Pu Z (2008) Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon Weather Rev 136(12):4819–4838Google Scholar
  52. Liberato MLR (2014) The 19 January 2013 windstorm over the north Atlantic: large-scale dynamics and impacts on Iberia. Weather Clim Extremes 5–6:16–28.  https://doi.org/10.1016/j.wace.2014.06.002 CrossRefGoogle Scholar
  53. Liberato MRL, Pinto JG, Trigo IF, Trigo RM (2011) Klaus—an exceptional winter storm over Northern Iberia and Southern France. Weather 66:330–334.  https://doi.org/10.1002/wea.755 CrossRefGoogle Scholar
  54. Liberato MLR, Pinto JG, Trigo RM, Ludwig P, Ordóñez P, Yuen D, Trigo IF (2012) Explosive development of winter storm Xynthia over the subtropical North Atlantic Ocean. Nat Hazards Earth Syst Sci 13:2239–2251.  https://doi.org/10.5194/nhess-13-2239-2013 CrossRefGoogle Scholar
  55. Liu Z, Ostrenga D, Teng W, Kempler S (2012) Tropical rainfall measuring mission (TRMM) precipitation data and services for research and applications. Bull Am Meteorol Soc 93:1317–1325Google Scholar
  56. Ludwig P, Pinto JG, Reyers M, Gray SL (2014) The role of anomalous SST and surface fluxes over the southeastern North Atlantic in the explosive development of windstorm Xynthia. Q J R Meteorol Soc 140(682):1729–1741Google Scholar
  57. Luna T, Rocha A, Carvalho AC, Ferreira JA, Sousa J (2011) Modelling the extreme precipitation event over Madeira Island on 20 February 2010. Nat Hazards Earth Syst Sci 11(9):2437–2452Google Scholar
  58. Ma LM, Bao XW (2016) Parameterization of planetary boundary-layer height with helicity and verification with tropical storm prediction. Bound Layer Meteorol 160(3):569–593Google Scholar
  59. Madala RV, Piacsek SA (1975) Numerical simulation of asymmetric hurricanes on a β-plane with vertical shear. Tellus 27(5):453–468Google Scholar
  60. Matulla C, Schoener W, Alexandersson H, von Stroch H, Wang XL (2008) European storminess: late nineteenth century to present. Clim Dyn 31:125–130.  https://doi.org/10.1007/s00382-007-0333-y CrossRefGoogle Scholar
  61. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4):851–875Google Scholar
  62. Mlawer EJ, Steven J, Taubman PD, Brown MJ, Iacono CS (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated–k model for the longwave. J Geophys Res 102:16663–16682Google Scholar
  63. Murakami H, Mizuta R, Shindo E (2012) Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Clim Dyn 39:2569–2584Google Scholar
  64. Neu U, Akperov MG, Bellenbaum N, Benestad R, Blender R, Caballero R, Cocozza A, Dacre HF, Feng Y, Fraedrich K, Grieger J (2013) IMILAST: a community effort to intercompare extratropical storm detection and tracking algorithms. Bull Am Meteorol Soc 94(4):529–547Google Scholar
  65. Noh Y, Cheon WG, Hong SY, Raasch S (2003) Improvement of the K-profile Model for the planetary boundary layer based on large eddy simulation data. Bound layer Meteorol 107(2):401–427Google Scholar
  66. Pinto JG, Spangehl T, Ulbrich U, Speth P (2005) Sensitivities of a cyclone detection and tracking algorithm: individual tracks and climatology. Meteorologische Zeitschrift 14(6):823–838Google Scholar
  67. Pleim JE (2007) A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: model description and testing. J Appl Meteor Climatol 46:1383–1395Google Scholar
  68. Powers J, Klemp J, Skamarock W, Davis C, Dudhia J, Gill D, Coen J, Gochis D, Ahmadov R, Peckham S, Grell G, Michalakes J, Trahan S, Benjamin S, Alexander C, DiMego G, Wang W, Schwartz C, Romine G, Liu Z, Snyder C, Chen F, Barlage M, Yu W, Duda M (2017) The weather research and forecasting (WRF) model: overview, system efforts, and future directions. Bull Am Meteor Soc 98(8):1717–1737.  https://doi.org/10.1175/BAMS-D-15-00308.1 CrossRefGoogle Scholar
  69. Pradhan PK, Liberato ML, Ferreira JA, Dasamsetti S, Rao SV (2018) Characteristics of different convective parameterization schemes on the simulation of intensity and track of severe extratropical storms over North Atlantic. Atom Res 199:128–144Google Scholar
  70. Ratna SB, Ratnam JV, Behera SK, Ndarana T, Takahashi K, Yamagata T (2014) Performance assessment of three convective parameterization schemes in WRF for downscaling summer rainfall over South Africa. Clim Dyn 42(11–12):2931–2953Google Scholar
  71. Reale M, Liberato ML, Lionello P, Pinto JG, Salon S, Ulbrich S (2019) A global climatology of explosive cyclones using a multi-tracking approach. Tellus A 71(1):1–19.  https://doi.org/10.1080/16000870.2019.1611340 CrossRefGoogle Scholar
  72. Rogers DP, Vladimir VT (2013) Weather and climate resilience: effective preparedness through national meteorological and hydrological services. Directions in Development. Washington, DC: World Bank.  https://doi.org/10.1596/978-1-4648-0026-9
  73. Sanders F, Gyakum JR (1980) Synoptic-dynamic climatology of the “bomb”. Mon Weather Rev 108(10):1589–1606Google Scholar
  74. Schultz DM, Sienkiewicz JM (2013) Using frontogenesis to identify sting jets in extratropical storms. Weather Forecast 28:603–613.  https://doi.org/10.1175/WAF-D-12-00126.1 CrossRefGoogle Scholar
  75. Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227(7):3465–3485Google Scholar
  76. Soares PM, Cardoso RM, Miranda PM, de Medeiros J, Belo-Pereira M, Espirito-Santo F (2012) WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Clim Dyn 39(9–10):2497–2522Google Scholar
  77. Sobel AH, Nilsson J, Polvani LM (2001) The weak temperature gradient approximation and balanced tropical moisture waves. J Atmos Sci 58(23):3650–3665Google Scholar
  78. Srinivas CV, Venkatesan R, Bhaskar Rao DV, Dasari HP (2007) Numerical simulation of Andhra severe storm (2003) model sensitivity to the boundary layer and convection parameterization. Pure Appl Geophys 164:1465–1487Google Scholar
  79. Sukoriansky S, Galperin B, Perov V (2005) Application of a new spectral model of stratified turbulence to the atmospheric boundary layer over sea ice. Bound Layer Meteorol 117:231–257Google Scholar
  80. Tapiador FJ, Roca R, Genio AD, Dewitte B, Petersen W, Zhang F (2019) Is precipitation a good metric for model performance? Bull Am Meteorol Soc.  https://doi.org/10.1175/BAMS-D-17-0218.1 CrossRefGoogle Scholar
  81. Tewari M, Chen F, Wang W, Dudhia J, LeMone MA, Mitchell K, Ek M, Gayno G, Wegiel J, Cuenca RH (2004) Implementation and verification of the unified NOAH land surface model in the WRF model. In: 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp 11–15Google Scholar
  82. Thompson G, Eidhammer T (2014) A study of aerosol impacts on clouds and precipitation development in a large winter storm. J Atmos Sci 71:3636–3658.  https://doi.org/10.1175/JAS-D-13-0305.1 CrossRefGoogle Scholar
  83. Trigo IF (2006) Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparsion between ERA-40 and NCEP/NCAR reanalysis. Clim Dyn 26(2–3):127–143Google Scholar
  84. Ulbrich U, Fink AH, Klawa M, Pinto JG (2001) Three extreme storms over Europe in December 1999. Weather 56(3):70–80Google Scholar
  85. Ulbrich U, Leckebusch GC, Pinto JG (2009) Extra-tropical cyclones in the present and future climate: a review. Theor Appl Climatol 96:117.  https://doi.org/10.1007/s00704-008-0083-8 CrossRefGoogle Scholar
  86. Van den Besselaar EJM, Haylock MR, Van der Schrier G, Klein Tank AM (2011) A European daily high-resolution observational gridded data set of sea level pressure. J Geophys Res 116:D11110.  https://doi.org/10.1029/2010JD015468 CrossRefGoogle Scholar
  87. Walser A, Arpagaus M, Appenzeller C, Leutbecher M (2006) The impact of moist singular vectors and horizontal resolution on short-range limited-area ensemble forecasts for two European winter storms. Mon Weather Rev 134(10):2877–2887Google Scholar
  88. Wang XL, Zwiers FW, Swail VR, Feng Y (2009) Trends and variability of storminess in the northeast Atlantic region, 1874–2007. Clim Dyn 33:1179–1195Google Scholar
  89. Wang XL, Wan H, Zwiers FW, Swail VR, Compo GP, Allan RJ, Vose RS, Jourdain S, Yin X (2011) Trends and low-frequency variability of storminess over western Europe, 1878–2007. Clim Dyn 37:2355–2371Google Scholar
  90. Wernli H, Dirren S, Liniger MA, Zillig M (2002) Dynamical aspects of the life cycle of the winter storm ‘Lothar’ (24–26 December 1999). Q J R Meteorol Soc 128(580):405–429Google Scholar
  91. Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82Google Scholar
  92. WMO-World Meteorological Organization (2014) WMO statement on the status of the global climate in 2013. WMO-No 1130, pp 14–17Google Scholar
  93. Xie B, Fung JCH, Chan A, Lau A (2012) Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model. J Geophys Res 117:D12103.  https://doi.org/10.1029/2011JD017080 CrossRefGoogle Scholar
  94. Yano JI, Bister M, Fuchs Ž, Gerard L, Phillips VT, Barkidija S, Piriou JM (2013) Phenomenology of convection-parameterization closure. Atmos Chem Phys 13(8):4111–4131Google Scholar
  95. Yoshida A, Asuma Y (2004) Structures and environment of explosively developing extratropical storms in the northwestern Pacific region. Mon Weather Rev 132(5):1121–1142Google Scholar
  96. Zhang DL, Anthes RA (1982) A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data. J Appl Meteorol 21:1594–1609.  https://doi.org/10.1175/15200450(1982)021%3c1594:AHRMOT%3e2.0.CO;2 CrossRefGoogle Scholar
  97. Zhang Y, Smith JA, Ntelekos AA, Baeck ML, Krajewski WF, Moshary F (2009) Structure and evolution of precipitation along a cold front in the northeastern United States. J Hydrometeor 10:1243–1256.  https://doi.org/10.1175/2009JHM1046.1 CrossRefGoogle Scholar
  98. Zhao M, Held IM, Lin SJ (2012) Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM. J Atmos Sci 69(7):2272–2283Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsSri Venkateswara UniversityTirupatiIndia
  2. 2.Escola de Ciências e Tecnologia, Universidade de Trás-os-Montes e Alto Douro (UTAD)Vila RealPortugal
  3. 3.Department of Environmental EngineeringTexas A&M UniversityKingsvilleUSA
  4. 4.Instituto Dom Luiz, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal

Personalised recommendations