Advertisement

Climate Dynamics

, Volume 53, Issue 11, pp 6715–6727 | Cite as

Quantifying the importance of interannual, interdecadal and multidecadal climate natural variabilities in the modulation of global warming rates

  • Meng Wei
  • Fangli QiaoEmail author
  • Yongqing Guo
  • Jia Deng
  • Zhenya Song
  • Qi Shu
  • Xiaodan Yang
Article

Abstract

Despite the monotonically rising greenhouse gas emission, global warming rate changes again and again, especially the slowdown during 1998–2013, challenging the current global temperature change mechanisms. Recently, different-scale natural climate variabilities have been individually recognized as the potential causes of global warming rate change, particularly the recent warming slowdown, but disagreements still exist on their relative importance. Here we quantify the contribution of interannual, interdecadal and multidecadal variabilities (IAV, IDV and MDV) in modulating the global warming rate during the period 1850–2017 via decomposing the global mean temperature timeseries derived from 12 datasets into several quasi-periodic fluctuations and a monotonical secular trend (ST) using the ensemble empirical mode decomposition method. Our results show that the IAV, IDV and MDV dominate the global warming rate change together, rather than one-scale variability alone. For example, during 1998–2013 both the IAV and IDV present obvious negative trends and combine to cut 59 ± 22% of global mean surface temperature (GMST) and 65 ± 38% of sea surface temperature (SST) positive trends which are caused by the steadily warming ST and the warming phase of MDV, thus causing an apparent warming slowdown during this period. Furthermore, we illustrate that the IAV, IDV and MDV mainly originate from the El Niño-Southern oscillation (ENSO), Pacific decadal oscillation (PDO) and Atlantic multidecadal oscillation (AMO), respectively. Our work partly reconciles the controversy over the importance of different-scale natural variabilities, and provides some insights for climate change attribution and prediction research.

Keywords

Global warming slowdown Hiatus Natural climate variability ENSO PDO AMO 

Notes

Acknowledgements

We thank all the data providers. M Wei is supported by National Natural Science Foundation of China (NSFC) (No. 41806043) and the Basic Scientific Fund for National Public Research Institutes of China (No. GY0219Q08). F Qiao is jointly supported by the NSFC (No. 41821004), the NSFC-Shandong Joint Fund for Marine Science Research Centers (No. U1606405) and the International cooperation project of Indo-Pacific ocean environment variation and air-sea interaction (No. GASI-IPOVAI-05). Z Song is supported by International cooperation project on the China-Australia Research Centre for Maritime Engineering of Ministry of Science and Technology, P. R. China (No. 2016YFE0101400) and AoShan Talents Cultivation Excellent Scholar Program Supported by Qingdao National Laboratory for Marine Science and Technology (No. 2017ASTCP-ES04). Q Shu is supported by the Basic Scientic Fund for National Public Research Institute of China (ShuXingbei Young Talent Program 2019S06).

Supplementary material

382_2019_4955_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2003 kb)

References

  1. Banholzer S, Donner S (2014) The influence of different El Niño types on global average temperature. Geophys Res Lett 41:2093–2099.  https://doi.org/10.1002/2014GL059520 CrossRefGoogle Scholar
  2. Cai W, Wu L, Lengaigne M, Li T, McGregor S, Kug J, Yu J, Stuecker MF, Santoso A, Li X, Ham Y, Chikamoto Y, Ng B, McPhaden MJ, Du Y, Dommenget D, Jia F, Kajtar JB, Keenlyside N, Lin X, Luo J, Martín-Rey M, Ruprich-Robert Y, Wang G, Xie S, Yang Y, Kang SM, Choi J, Gan B, Kim G, Kim C, Kim S, Kim J, Chang P (2019) Pantropical climate interactions. Science 363:v4236.  https://doi.org/10.1126/science.aav4236 CrossRefGoogle Scholar
  3. Chen X, Tung K (2014) Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345:897–903.  https://doi.org/10.1126/science.1254937 CrossRefGoogle Scholar
  4. Chen X, Tung K (2018a) Global-mean surface temperature variability: space-time perspective from rotated EOFs. Clim Dyn 51:1719–1732.  https://doi.org/10.1007/s00382-017-3979-0 CrossRefGoogle Scholar
  5. Chen X, Tung K (2018b) Global surface warming enhanced by weak Atlantic overturning circulation. Nature 559:387–391.  https://doi.org/10.1038/s41586-018-0320-y CrossRefGoogle Scholar
  6. Cheng L, Zheng F, Zhu J (2015) Distinctive ocean interior changes during the recent warming slowdown. Sci Rep 5:14346.  https://doi.org/10.1038/srep14346 CrossRefGoogle Scholar
  7. Cheng L, Wang G, Abraham J, Huang G (2018) Decadal ocean heat redistribution since the late 1990s and its association with key climate modes. Climate 6:91.  https://doi.org/10.3390/cli6040091 CrossRefGoogle Scholar
  8. Cowtan K, Way RG (2014) Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q J R Meteorol Soc 140:1935–1944.  https://doi.org/10.1002/qj.2297 CrossRefGoogle Scholar
  9. Dai A, Fyfe JC, Xie S, Dai X (2015) Decadal modulation of global surface temperature by internal climate variability. Nat Clim Change 5:555–559.  https://doi.org/10.1038/nclimate2605 CrossRefGoogle Scholar
  10. Easterling DR, Wehner MF (2009) Is the climate warming or cooling? Geophys Res Lett 36:L08706.  https://doi.org/10.1029/2009GL037810 CrossRefGoogle Scholar
  11. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080.  https://doi.org/10.1029/2000GL012745 CrossRefGoogle Scholar
  12. England MH, McGregor S, Spence P, Meehl GA, Timmermann A, Cai W, Gupta AS, McPhaden MJ, Purich A, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4:222–227.  https://doi.org/10.1038/nclimate2106 CrossRefGoogle Scholar
  13. Folland CK, Boucher O, Colman A, Parker DE (2018) Causes of irregularities in trends of global mean surface temperature since the late 19th century. Sci Adv 4:o5297.  https://doi.org/10.1126/sciadv.aao5297 CrossRefGoogle Scholar
  14. Freeman E, Woodruff SD, Worley SJ, Lubker SJ, Kent EC, Angel WE, Berry DI, Brohan P, Eastman R, Gates L, Gloeden W, Ji Z, Lawrimore J, Rayner NA, Rosenhagen G, Smith SR (2017) ICOADS Release 3.0: a major update to the historical marine climate record. Int J Climatol 37:2211–2232.  https://doi.org/10.1002/joc.4775 CrossRefGoogle Scholar
  15. Fyfe JC, Gillett NP, Zwiers FW (2013) Overestimated global warming over the past 20 years. Nat Clim Change 3:767–769.  https://doi.org/10.1038/nclimate1972 CrossRefGoogle Scholar
  16. Fyfe JC, Meehl GA, England MH, Mann ME, Santer BD, Flato GM, Hawkins E, Gillett NP, Xie S, Kosaka Y, Swart NC (2016) Making sense of the early-2000s warming slowdown. Nat Clim Change 6:224–228.  https://doi.org/10.1038/nclimate2938 CrossRefGoogle Scholar
  17. Guan X, Huang J, Guo R, Lin P (2015) The role of dynamically induced variability in the recent warming trend slowdown over the Northern Hemisphere. Sci Rep 5:12669.  https://doi.org/10.1038/srep12669 CrossRefGoogle Scholar
  18. Guemas V, Doblas-Reyes FJ, Andreu-Burillo I, Asif M (2013) Retrospective prediction of the global warming slowdown in the past decade. Nat Clim Change 3:649–653.  https://doi.org/10.1038/nclimate1863 CrossRefGoogle Scholar
  19. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004.  https://doi.org/10.1029/2010rg000345 CrossRefGoogle Scholar
  20. Hirahara S, Ishii M, Fukuda Y (2014) Centennial-scale sea surface temperature analysis and its uncertainty. J Clim 27:57–75.  https://doi.org/10.1175/JCLI-D-12-00837.1 CrossRefGoogle Scholar
  21. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A Math Phys Eng Sci 454:903–995.  https://doi.org/10.1098/rspa.1998.0193 CrossRefGoogle Scholar
  22. Huang B, Thorne PW, Banzon VF, Boyer T, Chepurin G, Lawrimore JH, Menne MJ, Smith TM, Vose RS, Zhang H (2017) Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J Clim 30:8179–8205.  https://doi.org/10.1175/JCLI-D-16-0836.1 CrossRefGoogle Scholar
  23. Ishii M, Shouji A, Sugimoto S, Matsumoto T (2005) Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int J Climatol 25:865–879.  https://doi.org/10.1002/joc.1169 CrossRefGoogle Scholar
  24. Ji F, Wu Z, Huang J, Chassignet EP (2014) Evolution of land surface air temperature trend. Nat Clim Change 4:462–466.  https://doi.org/10.1038/nclimate2223 CrossRefGoogle Scholar
  25. Kennedy JJ, Rayner NA, Smith RO, Parker DE, Saunby M (2011a) Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J Geophys Res Atmos 116:D14103.  https://doi.org/10.1029/2010jd015218 CrossRefGoogle Scholar
  26. Kennedy JJ, Rayner NA, Smith RO, Parker DE, Saunby M (2011b) Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J Geophys Res Atmos 116:D14104.  https://doi.org/10.1029/2010jd015220 CrossRefGoogle Scholar
  27. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708.  https://doi.org/10.1029/2005GL024233 CrossRefGoogle Scholar
  28. Knight JR, Kennedy JJ, Folland C, Harris G, Jones GS, Palmer M, Parker D, Scaife A, Stott P (2009) Do global temperature trends over the last decade falsify climate predictions? [In “State of the Climate in 2008”]. Bull Am Meteor Soc 90:S22–S23.  https://doi.org/10.1175/BAMS-90-8-StateoftheClimate CrossRefGoogle Scholar
  29. Kosaka Y, Xie S (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407.  https://doi.org/10.1038/nature12534 CrossRefGoogle Scholar
  30. Kosaka Y, Xie S (2016) The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat Geosci 9:669–673.  https://doi.org/10.1038/ngeo2770 CrossRefGoogle Scholar
  31. Kostov Y, Armour KC, Marshall J (2014) Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change. Geophys Res Lett 41:2108–2116.  https://doi.org/10.1002/2013GL058998 CrossRefGoogle Scholar
  32. Lean JL, Rind DH (2009) How will Earth’s surface temperature change in future decades? Geophys Res Lett 36:L15708.  https://doi.org/10.1029/2009GL038932 CrossRefGoogle Scholar
  33. Li X, Xie S, Gille ST, Yoo C (2016) Atlantic-induced pan-tropical climate change over the past three decades. Nat Clim Change 6:275–279.  https://doi.org/10.1038/nclimate2840 CrossRefGoogle Scholar
  34. Liu W, Xie S (2018) An ocean view of the global surface warming hiatus. Oceanography 31:72–79.  https://doi.org/10.5670/oceanog.2018.217 CrossRefGoogle Scholar
  35. Loeb NG, Lyman JM, Johnson GC, Allan RP, Doelling DR, Wong T, Soden BJ, Stephens GL (2012) Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat Geosci 5:110–113.  https://doi.org/10.1038/ngeo1375 CrossRefGoogle Scholar
  36. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteor Soc 78:1069–1079.  https://doi.org/10.1175/1520-0477(1997)078%3c1069:APICOW%3e2.0.CO;2 CrossRefGoogle Scholar
  37. McGregor S, Timmermann A, Stuecker MF, England MH, Merrifield M, Jin F, Chikamoto Y (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4:888–892.  https://doi.org/10.1038/nclimate2330 CrossRefGoogle Scholar
  38. Meehl GA, Arblaster JM, Fasullo JT, Hu A, Trenberth KE (2011) Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat Clim Change 1:360–364.  https://doi.org/10.1038/nclimate1229 CrossRefGoogle Scholar
  39. Meehl GA, Hu A, Arblaster JM, Fasullo J, Trenberth KE (2013) Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J Clim 26:7298–7310.  https://doi.org/10.1175/JCLI-D-12-00548.1 CrossRefGoogle Scholar
  40. Meehl GA, Hu A, Santer BD, Xie S (2016) Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends. Nat Clim Change 6:1005–1008.  https://doi.org/10.1038/nclimate3107 CrossRefGoogle Scholar
  41. Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophys Res Atmos 117:D08101.  https://doi.org/10.1029/2011JD017187 CrossRefGoogle Scholar
  42. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108:4407.  https://doi.org/10.1029/2002JD002670 CrossRefGoogle Scholar
  43. Risbey JS, Lewandowsky S, Langlais C, Monselesan DP, Kane OTJ, Oreskes N (2014) Well-estimated global surface warming in climate projections selected for ENSO phase. Nat Clim Change 4:835–840.  https://doi.org/10.1038/nclimate2310 CrossRefGoogle Scholar
  44. Roemmich D, Gilson J (2011) The global ocean imprint of ENSO. Geophys Res Lett 38:L13606.  https://doi.org/10.1029/2011GL047992 CrossRefGoogle Scholar
  45. Rohde R, Muller RA, Jacobsen R, Muller E, Perlmutter S, Rosenfeld A, Wurtele J, Groom D, Wickham C (2013) A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinform Geostat An Overv.  https://doi.org/10.4172/2327-4581.1000101 CrossRefGoogle Scholar
  46. Santer BD, Bonfils C, Painter JF, Zelinka MD, Mears C, Solomon S, Schmidt GA, Fyfe JC, Cole JN, Nazarenko L (2014) Volcanic contribution to decadal changes in tropospheric temperature. Nat Geosci 7:185–189.  https://doi.org/10.1038/ngeo2098 CrossRefGoogle Scholar
  47. Smith DM, Allan RP, Coward AC, Eade R, Hyder P, Liu C, Loeb NG, Palmer MD, Roberts CD, Scaife AA (2015) Earth’s energy imbalance since 1960 in observations and CMIP5 models. Geophys Res Lett 42:1205–1213.  https://doi.org/10.1002/2014GL062669 CrossRefGoogle Scholar
  48. Solomon S, Rosenlof KH, Portmann RW, Daniel JS, Davis SM, Sanford TJ, Plattner G (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327:1219.  https://doi.org/10.1126/science.1182488 CrossRefGoogle Scholar
  49. Solomon S, Daniel JS, Neely RR, Vernier JP, Dutton EG, Thomason LW (2011) The persistently variable “background” stratospheric aerosol layer and global climate change. Science 333:866–870.  https://doi.org/10.1126/science.1206027 CrossRefGoogle Scholar
  50. Stauning P (2014) Reduced solar activity disguises global temperature rise. Atmos Clim Sci 4:60–63.  https://doi.org/10.4236/acs.2014.41008 CrossRefGoogle Scholar
  51. Stocker TF, Qin D, Plattner GK, Tignor MMB, Allen SK, Boschung J, Xia Y, Bex V, Midgley PM, Nauels A (2013) Climate Change 2013: The Physical Science Basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Report No. 1535 pp, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,Google Scholar
  52. Sun C, Kucharski F, Li J, Jin F, Kang I, Ding R (2017) Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat Communs 8:15998.  https://doi.org/10.1038/ncomms15998 CrossRefGoogle Scholar
  53. Trenberth KE (1997) The definition of El Niño. Bull Am Meteor Soc 78:2771–2778.  https://doi.org/10.1175/1520-0477(1997)078%3c2771:TDOENO%3e2.0.CO;2 CrossRefGoogle Scholar
  54. Trenberth KE (2002) Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures. J Geophys Res 107:D8.  https://doi.org/10.1029/2000JD000298 CrossRefGoogle Scholar
  55. Trenberth KE (2015) Has there been a hiatus. Science 349:691–692.  https://doi.org/10.1126/science.aac9225 CrossRefGoogle Scholar
  56. Trenberth KE, Fasullo JT (2013) An apparent hiatus in global warming? Earth’s Future 1:19–32.  https://doi.org/10.1002/2013EF000165 CrossRefGoogle Scholar
  57. Tung K, Zhou J (2013) Using data to attribute episodes of warming and cooling in instrumental records. Proc Natl Acad Sci 110:2058–2063.  https://doi.org/10.1073/pnas.1212471110 CrossRefGoogle Scholar
  58. Vose RS, Arndt D, Banzon VF, Easterling DR, Gleason B, Huang B, Kearns E, Lawrimore JH, Menne MJ, Peterson TC, Reynolds RW, Smith TM, Williams CN, Wuertz DB (2012) NOAA’s merged land-ocean surface temperature analysis. Bull Am Meteor Soc 93:1677–1685.  https://doi.org/10.1175/BAMS-D-11-00241.1 CrossRefGoogle Scholar
  59. Wang G, Cheng L, Abraham J, Li C (2018) Consensuses and discrepancies of basin-scale ocean heat content changes in different ocean analyses. Clim Dyn 50:2471–2487.  https://doi.org/10.1007/s00382-017-3751-5 CrossRefGoogle Scholar
  60. Wei M, Qiao F (2017) Attribution analysis for the failure of CMIP5 climate models to simulate the recent global warming hiatus. Sci China Earth Sci 60:397–408.  https://doi.org/10.1007/s11430-015-5465-y CrossRefGoogle Scholar
  61. Wei M, Qiao F, Deng J (2015) A quantitative definition of global warming hiatus and 50-Year prediction of global-mean surface temperature. J Atmos Sci 72:3281–3289.  https://doi.org/10.1175/JAS-D-14-0296.1 CrossRefGoogle Scholar
  62. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adap Data Anal 1:1–41.  https://doi.org/10.1142/S1793536909000047 CrossRefGoogle Scholar
  63. Wu Z, Huang NE, Long SR, Peng C (2007) On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci 104:14889–14894.  https://doi.org/10.1073/pnas.0701020104 CrossRefGoogle Scholar
  64. Wu Z, Huang NE, Wallace JM, Smoliak BV, Chen X (2011) On the time-varying trend in global-mean surface temperature. Clim Dyn 37:759–773.  https://doi.org/10.1007/s00382-011-1128-8 CrossRefGoogle Scholar
  65. Xie S, Kosaka Y (2017) What caused the global surface warming hiatus of 1998-2013? Curr Clim Change Rep 3:128–140.  https://doi.org/10.1007/s40641-017-0063-0 CrossRefGoogle Scholar
  66. Yan X, Boyer T, Trenberth K, Karl TR, Xie S, Nieves V, Tung K, Roemmich D (2016) The global warming hiatus: slowdown or redistribution? Earth’s Future 4:472–482.  https://doi.org/10.1002/2016EF000417 CrossRefGoogle Scholar
  67. Zhang L (2016) The roles of external forcing and natural variability in global warming hiatuses. Clim Dyn 47:3157–3169.  https://doi.org/10.1007/s00382-016-3018-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Meng Wei
    • 1
    • 2
    • 3
  • Fangli Qiao
    • 1
    • 2
    • 3
    Email author
  • Yongqing Guo
    • 4
  • Jia Deng
    • 1
    • 2
    • 3
  • Zhenya Song
    • 1
    • 2
    • 3
  • Qi Shu
    • 1
    • 2
    • 3
  • Xiaodan Yang
    • 1
    • 2
    • 3
  1. 1.First Institute of OceanographyMinistry of Natural Resources of the People’s Republic of ChinaQingdaoChina
  2. 2.Laboratory for Regional Oceanography and Numerical ModelingPilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina
  3. 3.Key Laboratory of Marine Science and Numerical ModelingMinistry of Natural Resources of the People’s Republic of ChinaQingdaoChina
  4. 4.Marine Science and Technology CollegeZhejiang Ocean UniversityZhoushanChina

Personalised recommendations