Effect of the mean flow on the anomalous anticyclone over the Indo-Northwest Pacific in post-El Niño summers

  • Kaiming HuEmail author
  • Gang Huang
  • Shang-Ping Xie
  • Shang-Min Long


A large-scale anomalous anticyclone (AAC) is a recurrent pattern in post-El Niño summers, extending from the tropical Northwest Pacific (NWP) to the North Indian Ocean. In boreal summer, there is a strongly confluent lower-level flow between the monsoonal westerlies and easterly trades over the Indo-Northwest Pacific. The effect of this basic state confluent flow on the AAC is investigated with energetics analysis and numerical modeling. The results show that the lower-level mean flow over the Indo-Northwest Pacific aids the AAC development. Specifically, the conversion of kinetic energy from the mean confluent flow to perturbations helps amplify easterly anomalies over the Indo-Northwest Pacific in post-El Niño summers. The enhanced easterly wind anomalies provide a positive feedback onto the AAC by inducing surface Ekman divergence to suppress convection over the NWP. Moreover, the structure of the optimal diabatic heating for the AAC pattern is determined using a method similar to the Green’s function approach. The optimal forcing features heating in the tropical Indian Ocean and cooling in the NWP. This suggests that barotropic energy conversion in the confluence zone and the El Niño-induced positive (negative) sea surface temperature anomalies over the TIO (NWP) together lead to the AAC development over the Indo-Northwest Pacific in post-El Niño summers.


ENSO East Asian Climate Anomalous anticyclone 



The study is jointly supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20060502), the National Natural Science Foundation of China (41425086, 41661144016, and 41706026), U.S. National Science Foundation (1637450), and State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences (project no. LTO1704).

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests.


  1. Adler RF, Huffman GJ, Chang AE, Ferraro RR, Xie P, Janowiak JE, Rudolf B, Schneider U, Curtis S, Bolvin D (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979—present). J Hydrometeorol 4(6):1147–1167CrossRefGoogle Scholar
  2. Branstator G (1985) Analysis of general circulation model sea–surface temperature anomaly simulations using a linear model. Part I: forced solutions. J Atmos Sci 42(21):2225–2241CrossRefGoogle Scholar
  3. Branstator G (1990) Low-frequency patterns induced by stationary waves. J Atmos Sci 47(5):629–649CrossRefGoogle Scholar
  4. Chang CP, Zhang YS, Li T (2000) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: roles of the subtropical ridge. J Clim 13(24):4310–4325CrossRefGoogle Scholar
  5. Chowdary JS, Xie S-P, Lee J-Y, Kosaka Y, Wang B (2010) Predictability of summer northwest Pacific climate in 11 coupled model hindcasts: local and remote forcing. J Geophys Res Atmos 115:D22121CrossRefGoogle Scholar
  6. Chowdary JS, Xie SP, Tokinaga H, Okumura YM, Kubota H, Johnson N, Zheng XT (2012) Interdecadal variations in ENSO teleconnection to the Indo–Western Pacific for 1870–2007. J Clim 25(5):1722–1744CrossRefGoogle Scholar
  7. Chowdary JS, Harsha HS, Gnanaseelan C, Srinivas G, Parekh A, Pillai P, Naidu CV (2017) Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño. Clim Dyn 48(7):2707–2727CrossRefGoogle Scholar
  8. Fan L, Shin SI, Liu QY, Liu ZY (2013) Relative importance of tropical SST anomalies in forcing East Asian summer monsoon circulation. Geophys Res Lett 40(10):2471–2477CrossRefGoogle Scholar
  9. Fu C, Ye D (1988) The tropical very low-frequency oscillation on interannual scale. Adv Atmos Sci 5(3):369–388CrossRefGoogle Scholar
  10. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106(449):447–462CrossRefGoogle Scholar
  11. Guan Z, Yamagata T (2003) The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys Res Lett 30(10):51CrossRefGoogle Scholar
  12. Hamouda ME, Kucharski F (2019) Ekman pumping mechanism driving precipitation anomalies in response to equatorial heating. Clim Dyn 52(1):697–711CrossRefGoogle Scholar
  13. He C, Zhou TJ, Li T (2019) Weakened anomalous Western North Pacific anticyclone during an El Nino-decaying summer under a warmer climate: dominant role of the weakened impact of the tropical Indian Ocean on the atmosphere. J Clim 32(1):213–230CrossRefGoogle Scholar
  14. Hirota N, Takahashi M (2012) A tripolar pattern as an internal mode of the East Asian summer monsoon. Clim Dyn 39(9):2219–2238CrossRefGoogle Scholar
  15. Hu K, Huang G, Huang R (2011) The impact of tropical Indian Ocean variability on summer surface air temperature in China. J Clim 24(20):5365–5377CrossRefGoogle Scholar
  16. Hu K, Huang G, Qu X, Huang R (2012) The impact of Indian Ocean variability on high temperature extremes across south of Yangtze River valley in late summer. Adv Atmos Sci 29(1):91–100CrossRefGoogle Scholar
  17. Hu K, Huang G, Zheng X-T, Xie S-P, Qu X, Du Y, Liu L (2014) Interdecadal variations in ENSO influences on Northwest Pacific–East Asian early summertime climate simulated in CMIP5 models. J Clim 27(15):5982–5998CrossRefGoogle Scholar
  18. Hu K, Xie S-P, Huang G (2017) Orographically anchored El Niño effect on summer rainfall in Central China. J Clim 30(24):10037–10045CrossRefGoogle Scholar
  19. Huang G, Hu K, Xie S-P (2010) Strengthening of tropical Indian Ocean teleconnection to the Northwest Pacific since the Mid-1970s: an atmospheric GCM study. J Clim 23(19):5294–5304CrossRefGoogle Scholar
  20. Jiang W, Huang G, Hu K, Wu R, Gong H, Chen X, Tao W (2017) Diverse relationship between ENSO and the Northwest Pacific summer climate among CMIP5 models: dependence on the ENSO decay pace. J Clim 30(1):109–127CrossRefGoogle Scholar
  21. Jiang W, Huang G, Huang P, Hu K (2018) Weakening of Northwest Pacific anticyclone anomalies during post–El Niño summers under global warming. J Clim 31(9):3539–3555CrossRefGoogle Scholar
  22. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo J, Fiorino M, Potter G (2002) Ncep–doe amip-ii reanalysis (r-2). Bull Am Meteorol Soc 83(11):1631–1644CrossRefGoogle Scholar
  23. Klein SA, Soden BJ, Lau N-C (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12(4):917–932CrossRefGoogle Scholar
  24. Kosaka Y, Nakamura H (2006) Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Q J R Meteorol Soc 132(619):2009–2030CrossRefGoogle Scholar
  25. Kosaka Y, Xie S-P, Lau N-C, Vecchi GA (2013) Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proc Natl Acad Sci 110(19):7574–7579CrossRefGoogle Scholar
  26. Lau KH, Lau N-C (1992) The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. Mon Weather Rev 120(11):2523–2539CrossRefGoogle Scholar
  27. Lau N-C, Nath MJ (1996) The role of the “Atmospheric Bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J Clim 9(9):2036–2057CrossRefGoogle Scholar
  28. Lau N-C, Nath MJ (2009) A model investigation of the role of air–sea interaction in the climatological evolution and ENSO-related variability of the summer monsoon over the South China Sea and Western North Pacific. J Clim 22(18):4771–4792CrossRefGoogle Scholar
  29. Li SL, Lu J, Huang G, Hu KM (2008) Tropical Indian Ocean basin warming and East Asian summer monsoon: a multiple AGCM study. J Clim 21(22):6080–6088CrossRefGoogle Scholar
  30. Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn 44(1):25–43CrossRefGoogle Scholar
  31. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110(7):699–706CrossRefGoogle Scholar
  32. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. CrossRefGoogle Scholar
  33. Rong X, Zhang R, Li T (2010) Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon-ENSO relationship. Chin Sci Bull 55(22):2458–2468CrossRefGoogle Scholar
  34. Simmons A, Wallace J, Branstator G (1983) Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J Atmos Sci 40:1363–1392CrossRefGoogle Scholar
  35. Srinivas G, Chowdary JS, Kosaka Y, Gnanaseelan C, Parekh A, Prasad KVSR (2018) Influence of the Pacific–Japan pattern on Indian summer monsoon rainfall. J Clim 31(10):3943–3958CrossRefGoogle Scholar
  36. Stuecker MF, Timmermann A, Jin F, Mcgregor S, Ren H (2013) A combination mode of the annual cycle and the El Nino/Southern Oscillation. Nat Geosci 6(7):540CrossRefGoogle Scholar
  37. Stuecker MF, Jin F-F, Timmermann A, McGregor S (2015) Combination mode dynamics of the anomalous Northwest Pacific anticyclone. J Clim 28(3):1093–1111CrossRefGoogle Scholar
  38. Trenberth KE, Caron JM, Stepaniak DP, Worley S (2002) Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures. J Geophys Res Atmos 107(D8):AAC-5Google Scholar
  39. Wang B, Wu RG, Fu XH (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13(9):1517–1536CrossRefGoogle Scholar
  40. Wang B, Wu RG, Li T (2003) Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J Clim 16(8):1195–1211CrossRefGoogle Scholar
  41. Wang B, Yang J, Zhou TJ (2008) Interdecadal changes in the major modes of Asian–Australian monsoon variability: strengthening relationship with ENSO since the late 1970s. J Clim 21(8):1771–1789CrossRefGoogle Scholar
  42. Watanabe M, Kimoto M (2000) Atmosphere-ocean thermal coupling in the North Atlantic: a positive feedback. Q J R Meteorol Soc 126:3343–3369CrossRefGoogle Scholar
  43. Wu B, Li T, Zhou T (2010) Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the Western North Pacific anomalous anticyclone during the El Niño decaying summer. J Clim 23(11):2974–2986CrossRefGoogle Scholar
  44. Xiang B, Wang B, Yu W, Xu S (2013) How can anomalous western North Pacific subtropical high intensify in late summer? Geophys Res Lett 40(10):2349–2354CrossRefGoogle Scholar
  45. Xie S-P, Zhou Z-Q (2017) Seasonal modulations of El Niño–related atmospheric variability: Indo-Western Pacific Ocean feedback. J Clim 30(9):3461–3472CrossRefGoogle Scholar
  46. Xie SP, Annamalai H, Schott FA, McCreary JP (2002) Structure and mechanisms of South Indian Ocean climate variability. J Clim 15(8):864–878CrossRefGoogle Scholar
  47. Xie SP, Hu KM, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Nino. J Clim 22(3):730–747CrossRefGoogle Scholar
  48. Xie SP, Du Y, Huang G, Zheng XT, Tokinaga H, Hu K, Liu Q (2010) Decadal shift in El Nino influences on Indo-Western Pacific and East Asian climate in the 1970s. J Clim 23:3352–3368CrossRefGoogle Scholar
  49. Xie S, Kosaka Y, Du Y, Hu K, Chowdary JS, Huang G (2016) Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: a review. Adv Atmos Sci 33(4):411–432CrossRefGoogle Scholar
  50. Yang JL, Liu QY, Xie SP, Liu ZY, Wu LX (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34(2):L02708. CrossRefGoogle Scholar
  51. Zhang R, Sumi A, Kimoto M (1996) Impact of El Niño on the East Asian monsoon: a diagnostic study of the ′86/87 and ′91/92 events. J Meteorol Soc Jpn 74(1):49–62CrossRefGoogle Scholar
  52. Zhang W, Li H, Stuecker MF, Jin F, Turner AG (2016) A new understanding of El Niño’s impact over East Asia: dominance of the ENSO combination mode. J Clim 29(12):4347–4359CrossRefGoogle Scholar
  53. Zhou Z-Q, Xie S-P, Zhang GJ, Zhou W (2018) Evaluating AMIP skill in simulating interannual variability over the Indo-Western Pacific. J Clim 31(6):2253–2265CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics and Center for Monsoon System Research, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Joint Center for Global Change Studies (JCGCS)BeijingChina
  3. 3.Laboratory for Regional Oceanography and Numerical ModelingQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  4. 4.Scripps Institution of Oceanography, University of California at San DiegoLa JollaUSA
  5. 5.College of OceanographyHohai UniversityNanjingChina
  6. 6.State Key Laboratory of Tropical Oceanography, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina

Personalised recommendations