Advertisement

Climate Dynamics

, Volume 53, Issue 9–10, pp 5349–5373 | Cite as

Sensitivity determined simultaneous estimation of multiple parameters in coupled models: part I—based on single model component sensitivities

  • Yuxin Zhao
  • Xiong Deng
  • Shaoqing ZhangEmail author
  • Zhengyu Liu
  • Chang Liu
Article
  • 90 Downloads

Abstract

While various data assimilation algorithms based on Bayes’ theorem have been developed for state estimation, some of these algorithms have also been applied to model parameter estimation. Coupled model parameter estimation (CPE) adjusts model parameters using available observations; then, the observation-adjusted parameters can greatly mitigate the model bias, which has great potential to reduce climate drift and enhance forecast skill in coupled climate models. However, given numerous model parameters that are associated with multiple time scales, how to conduct CPE with the simultaneous estimation of multiple parameters (SEMP) is still a popular research topic. With the aid of 3 coupled models, ranging from the conceptual coupled model to the intermediate coupled circulation model, this study has developed a systematic method to implement the SEMP–CPE. Linking coupled model sensitivities with the signal-to-noise ratio of the CPE, the SEMP–CPE method uses a timescale structure with coupled model sensitivities to determine which and how many parameters are estimated simultaneously in each CPE cycle to minimize the error of the coupled model simulation. Given that in a coupled model, the timescales by which different model components sensitively respond to a parameter perturbation can be quite different due to their different variabilities in their characteristic timescales, the first part of our study series focuses on the SEMP–CPE associated with single model component sensitivities. The results show that the quality of the model state analysis (in terms of assimilation) improves with the number of parameters being estimated by the order of sensitivities until the signal-to-noise ratio reaches a low threshold. Only when the most impactful physical parameters are estimated is the error of the state estimation consistently decreasing; as well as the signal-to-noise ratio in state-parameter covariance in SEMP scheme is enhanced. While only the signal extracted from the SEMP–CPE reaches saturated, the signal-to-noise ratio in the SEMP–CPE is maximized, and the state estimation error is minimized. Otherwise, if the parameters with low sensitivities are included in the CPE, the error of the state estimation increases instead. These results provide some insight into simultaneously estimating multiple parameters in a biased coupled general circulation model that assimilates real observations, which further improves climate analysis and prediction initialization.

Keywords

Data assimilation Coupled parameter estimation Simultaneous estimation of multiple parameters Single model component sensitivities 

Notes

Acknowledgements

This research was funded by National CMOST Key Research & Development projects (Nos. 2017YFC1404100 and 2017YFC1404104), the NSFC (Nos. 51379049, 41676088, 41775100, and 41830964), the FRFCUC (Nos. HEUCFX41302, HEUCFD1505, and HEUCF160410), the YCAB of Heilongjiang Province (No. 1254G018), the SRFROCS of Heilongjiang Province (No. LC2013C21), and the HEU and CSC (which supported Xiong Deng studying abroad at GFDL/UW-Madison/OSU for two and a half years).

References

  1. Aksoy A, Zhang F, Nielsen-Gammon JW (2006a) Ensemble-based simultaneous state and parameter estimation with MM5. Geophys Res Lett 33:L12801.  https://doi.org/10.1029/2006GL026186 CrossRefGoogle Scholar
  2. Aksoy A, Zhang F, Nielsen-Gammon JW (2006b) Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model. Mon Weather Rev 134:2951–2970.  https://doi.org/10.1175/MWR3224.1 CrossRefGoogle Scholar
  3. Anderson JL (2001) An ensemble adjustment Kalman Filter for data assimilation. Mon Weather Rev 129:2884–2903.  https://doi.org/10.1175/1520-0493(2001)129%3c2884:AEAKFF%3e2.0.CO;2 CrossRefGoogle Scholar
  4. Anderson JL (2003) A local least squares framework for ensemble filtering. Mon Weather Rev 131:634–642.  https://doi.org/10.1175/1520-0493(2003)131%3c0634:ALLSFF%3e2.0.CO;2 CrossRefGoogle Scholar
  5. Annan JD, Hargreaves JC (2004) Efficient parameter estimation for a highly chaotic system. Tellus A 56A:520–526.  https://doi.org/10.1111/j.1600-0870.2004.00073.x CrossRefGoogle Scholar
  6. Annan JD, Hargreaves JC, Edwards NR, Marsh R (2005a) Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter. Ocean Model 8:135–154.  https://doi.org/10.1016/j.ocemod.2003.12.004 CrossRefGoogle Scholar
  7. Annan JD, Lunt DJ, Hargreaves JC, Valdes PJ (2005b) Parameter estimation in an atmospheric GCM using the ensemble Kalman filter. Nonlinear Process Geophys 12:363–371.  https://doi.org/10.5194/npg-12-363-2005 CrossRefGoogle Scholar
  8. Asselin R (1972) Frequency filter for time integrations. Mon Weather Rev 100:487–490.  https://doi.org/10.1175/1520-0493(1972)100%3c0487:FFFTI%3e2.3.CO;2 CrossRefGoogle Scholar
  9. Birchfield GE (1989) A coupled ocean-atmosphere climate model: temperature versus salinity effects on the thermohaline circulation. Clim Dyn 4:57–71CrossRefGoogle Scholar
  10. Birchfield GE, Wyant M, Wang H (1990) A coupled ocean-atmosphere box model of the Atlantic Ocean: a bimodal climate response. J Mar Syst 1:197–208.  https://doi.org/10.1016/0924-7963(90)90255-9 CrossRefGoogle Scholar
  11. Collins WD et al (2006) The community climate system model version 3 (CCSM). J Clim 19:2122–2143.  https://doi.org/10.1175/JCLI3761.1 CrossRefGoogle Scholar
  12. Dee DP (2005) Bias and data assimilation. Q J R Meteorol Soc 131:3323–3343.  https://doi.org/10.1256/qj.05.137 CrossRefGoogle Scholar
  13. Dee DP, Silva AMD (1998) Data assimilation in the presence of forecast bias. Q J R Meteorol Soc 124:269–295.  https://doi.org/10.1002/qj.49712454512 CrossRefGoogle Scholar
  14. DelSole T, Yang X (2010) State and parameter estimation in stochastic dynamical models. Phys D 239:1781–1788.  https://doi.org/10.1016/j.physd.2010.06.001 CrossRefGoogle Scholar
  15. Delworth TL et al (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19(5):643–674.  https://doi.org/10.1175/jcli3629.1 CrossRefGoogle Scholar
  16. Dommenget D, Flöter J (2011) Conceptual understanding of climate change with a globally resolved energy balance model. Clim Dyn 37:2143–2165.  https://doi.org/10.1007/s00382-011-1026-0 CrossRefGoogle Scholar
  17. Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99:10143–10162.  https://doi.org/10.1029/94JC00572 CrossRefGoogle Scholar
  18. Evensen G (2007) Data assimilation: the ensemble Kalman filter. Springer, SpringerGoogle Scholar
  19. Gaspari G, Cohn SE (1999) Construction of the correlation functions in two and three dimensions. Q J R Meteorol Soc 125:723–757.  https://doi.org/10.1002/qj.49712555417 CrossRefGoogle Scholar
  20. Gnanadesikan A (1999) A simple predictive model for the structure of the oceanic pycnocline. Science 283:2077–2079CrossRefGoogle Scholar
  21. Hacker JP, Snyder C (2005) Ensemble Kalman filter assimilation of fixed screen-height observations in a parameterized PBL. Mon Weather Rev 133:3260–3275.  https://doi.org/10.1175/MWR3022.1 CrossRefGoogle Scholar
  22. Han G, Wu X, Zhang S, Liu Z, Li W (2013) Error covariance estimation for coupled data assimilation using a Lorenz atmosphere and a simple pycnocline ocean model. J Clim 26:10218–10231.  https://doi.org/10.1175/JCLI-D-13-00236.1 CrossRefGoogle Scholar
  23. Han G, Zhang X, Zhang S, Wu X, Liu Z (2014) Mitigation of coupled model biases included by dynamical core misfitting through parameter optimization: simulation with a simple pycnocline prediction model. Nonlinear Process Geophys 21:357–366.  https://doi.org/10.5194/npg-21-357-2014 CrossRefGoogle Scholar
  24. Hansen J, Penland C (2007) On stochastic parameter estimation using data assimilation. Phys D 230:88–98.  https://doi.org/10.1016/j.physd.2006.11.006 CrossRefGoogle Scholar
  25. Houtekamer PL, Mitchell HL (2001) A sequential ensemble Kalman filter for atmospheric data assimilation. Mon Weather Rev 129:123–137.  https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2 CrossRefGoogle Scholar
  26. Kang JS, Kalnay E, Liu J, Fung I, Miyoshi T, Ide K (2011) “Variable localization” in an ensemble Kalman filter: application to the carbon cycle data assimilation. J Geophys Res 116:D09110.  https://doi.org/10.1029/2010JD014673 CrossRefGoogle Scholar
  27. Kondrashov D, Sun C, Ghil M (2008) Data assimilation for a coupled ocean-atmosphere model, part II: parameter estimation. Mon Weather Rev 136:5062–5076.  https://doi.org/10.1175/2008MWR2544.1 CrossRefGoogle Scholar
  28. Kulhavy R (1993) Implementation of Bayesian parameter estimation in adaptive control and signal processing. J R Stat Soc 42D(4):471–482.  https://doi.org/10.2307/2348479 CrossRefGoogle Scholar
  29. Lang M, Van Leeuwen JP, Browne P (2016) A systematic method of parameterization estimation using data assimilation. Tellus A 68(1):29012.  https://doi.org/10.3402/tellusa.v68.29012 CrossRefGoogle Scholar
  30. Liu Z (1993) Interannual positive feedbacks in a simple extra- tropical air–sea coupling system. J Atmos Sci 50:3022–3028.  https://doi.org/10.1175/1520-0469(1993)050%3c3022:IPFIAS%3e2.0.CO;2 CrossRefGoogle Scholar
  31. Liu Y, Liu Z, Zhang S, Rong X, Jacob R, Wu S, Lu F (2014a) Ensemble-based parameter estimation in a coupled GCM using the adaptive spatial average method. J Clim 27(11):4002–4014.  https://doi.org/10.1175/JCLI-D-13-00091.1 CrossRefGoogle Scholar
  32. Liu Y, Liu Z, Zhang S, Jacob R, Lu F, Rong X, Wu S (2014b) Ensemble-based parameter estimation in a coupled general circulation model. J Clim 27(18):7151–7162.  https://doi.org/10.1175/JCLI-D-13-00406.1 CrossRefGoogle Scholar
  33. Lorenz EN (1963) Deterministic non-periodic flow. J Atmos Sci 20:130–141CrossRefGoogle Scholar
  34. Lorenz EN (1984) Irregularity: a fundamental property of the atmosphere. Tellus A 36A:98–110.  https://doi.org/10.1111/j.1600-0870.1984.tb00230.x CrossRefGoogle Scholar
  35. Lorenz EN (1990) Can chaos and intransitivity lead to interannual variability? Tellus A 42A:378–389.  https://doi.org/10.1034/j.1600-0870.1990.t01-2-00005.x CrossRefGoogle Scholar
  36. Medhaug I, Langehaug HR, Eldevik T, Furevik T, Bentsen M (2012) Mechanisms for decadal scale variability in a simulated Atlantic meridional overturning circulation. Clim Dyn 39:77–93.  https://doi.org/10.1007/s00382-011-1124-z CrossRefGoogle Scholar
  37. Menary MB, Park W, Lohmann K, Vellinga M, Palmer MD, Latif M, Jungclaus JH (2012) A multimodel comparison of centennial Atlantic meridional overturning circulation variability. Clim Dyn 38:2377–2388.  https://doi.org/10.1007/s00382-011-1172-4 CrossRefGoogle Scholar
  38. Ridgwell A, Hargreaves JC, Edwards NR, Annan JD, Lenton TM, Marsh R, Yool A, Watson A (2007) Marine geochemical data assimilation in an efficient Earth system model of global biogeochemical cycling. Biogeosciences 4:87–104.  https://doi.org/10.5194/bg-4-87-2007 CrossRefGoogle Scholar
  39. Robert A (1969) The integration of a spectral model of the atmosphere by the implicit method. In: Proceedings of the WMO/IUGG symposium on NWP, Tokyo, Japan, Japan Meteorological Society, pp 19–24Google Scholar
  40. Roebber PJ (1995) Climate variability in a low-order coupled atmosphere–ocean model. Tellus 47A:473–494.  https://doi.org/10.1034/j.1600-0870.1995.t01-3-00006.x CrossRefGoogle Scholar
  41. Schulz M, Prange M, Klocker A (2007) Low-frequency oscillations of the Atlantic Ocean meridional overturning circulation in a coupled climate model. Clim Past 3:97–107.  https://doi.org/10.5194/cp-3-97-2007 CrossRefGoogle Scholar
  42. Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799.  https://doi.org/10.1126/science.1139540 CrossRefGoogle Scholar
  43. Stommel HM (1961) Thermohaline convection with two stable regimes of flow. Tellus 13:224–230.  https://doi.org/10.1111/j.2153-3490.1961.tb00079.x CrossRefGoogle Scholar
  44. Stone PH, Yao MS (1990) Development of a two-dimensional zonally averaged statistical-dynamical model. Part III: the parameterization of the eddy fluxes of heat and moisture. J Clim 3:726–740.  https://doi.org/10.1175/1520-0442(1990)003%3c0726:DOATDZ%3e2.0.CO;2 CrossRefGoogle Scholar
  45. Taboada JJ, Lorenzo MN (2005) Effects of the synoptic scale variability on the thermohaline circulation. Nonlinear Process Geophys 12(4):435–439.  https://doi.org/10.5194/npg-12-435-2005 CrossRefGoogle Scholar
  46. Tao G (2003) Adaptive control design and analysis. Wiley, New YorkCrossRefGoogle Scholar
  47. Tardif R, Hakim GJ, Snyder C (2014) Coupled atmosphere-ocean data assimilation experiments with a low-order climate model. Clim Dyn 43:1631–1643.  https://doi.org/10.1007/s00382-013-1989-0 CrossRefGoogle Scholar
  48. Thompson SJ, Warren SG (1982) Parameterization of outgoing infrared radiation derived from detailed radiative calculations. J Atmos Sci 40:2667–2680.  https://doi.org/10.1175/1520-0469(1982)039%3c2667:POOIRD%3e2.0.CO;2 CrossRefGoogle Scholar
  49. Tong M, Xue M (2008a) Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part I: sensitivity analysis and parameter identifiability. Mon Weather Rev 136:1630–1648.  https://doi.org/10.1175/2007MWR2070.1 CrossRefGoogle Scholar
  50. Tong M, Xue M (2008b) Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part II: parameter estimation experiments. Mon Weather Rev 136:1649–1668.  https://doi.org/10.1175/2007MWR2071.1 CrossRefGoogle Scholar
  51. Van Veen L, Opsteegh T, Verhulst F (2001) Active and passive ocean regimes in a low-order climate model. Tellus 53A:616–628.  https://doi.org/10.1034/j.1600-0870.2001.00241.x CrossRefGoogle Scholar
  52. Wouters B, Drijfhout S, Hazeleger W (2012) Inter-decadal North-Atlantic meridional overturning circulation variability in EC-EARTH. Clim Dyn 39:2695–2712.  https://doi.org/10.1007/s00382-012-1366-4 CrossRefGoogle Scholar
  53. Wu X, Zhang S, Liu Z, Rosati A, Delworth TL, Liu Y (2012) Impact of geographic dependent parameter optimization on climate estimation and prediction: simulation with an intermediate coupled model. Mon Weather Rev 140(12):3956–3971.  https://doi.org/10.1175/MWR-D-11-00298.1 CrossRefGoogle Scholar
  54. Wu X, Zhang S, Liu Z, Rosati A, Delworth TL (2013) A study of impact of the geographic dependence of observing system on parameter estimation with an intermediate coupled model. Clim Dyn 40:1789–1798.  https://doi.org/10.1007/s00382-012-1385-1 CrossRefGoogle Scholar
  55. Wu X, Li W, Han G, Zhang S, Wang X (2014) A compensatory approach of the fixed localization in EnKF. Mon Weather Rev 142:3713–3733.  https://doi.org/10.1175/MWR-D-13-00369.1 CrossRefGoogle Scholar
  56. Wu X, Han G, Zhang S, Liu Z (2016) A study of the impact of parameter optimization on ENSO predictability with an intermediate coupled model. Clim Dyn 46:711–727.  https://doi.org/10.1007/s00382-015-2608-z CrossRefGoogle Scholar
  57. Yang X, DelSole T (2009) Using the ensemble Kalman Filter to estimate multiplicative model parameters. Tellus A 61A:601–609.  https://doi.org/10.1111/j.1600-0870.2009.00407.x CrossRefGoogle Scholar
  58. Zhang S (2011a) Impact of observation-optimized model parameters on decadal predictions: simulation with a simple pycnocline prediction model. Geophys Res Lett 38:L02702.  https://doi.org/10.1029/2010GL046133 CrossRefGoogle Scholar
  59. Zhang S (2011b) A study of impacts of coupled model initial shocks and state-parameter optimization on climate predictions using a simple pycnocline prediction model. J Clim 24(23):6210–6226.  https://doi.org/10.1175/JCLI-D-10-05003.1 CrossRefGoogle Scholar
  60. Zhang S, Anderson JL (2003) Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model. Tellus A 55(2):126–147.  https://doi.org/10.1034/j.1600-0870.2003.00010.x CrossRefGoogle Scholar
  61. Zhang S, Harrison MJ, Wittenberg AT, Rosati A, Anderson JL, Balaji V (2005) Initialization of an ENSO forecast system using a parallelized ensemble filter. Mon Weather Rev 133(11):3176–3201.  https://doi.org/10.1175/MWR3024.1 CrossRefGoogle Scholar
  62. Zhang S, Harrison MJ, Rosati A, Wittenberg A (2007) System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon Weather Rev 135:3541–3564.  https://doi.org/10.1175/MRW3466.1 CrossRefGoogle Scholar
  63. Zhang S, Liu Z, Rosati A, Delworth T (2012) A study of enhancive parameter correction with coupled data assimilation for climate estimation and prediction using a simple coupled model. Tellus A 64:1–20.  https://doi.org/10.3402/tellusa.v64i0.10963 CrossRefGoogle Scholar
  64. Zhang X, Zhang S, Liu Z, Wu X, Han G (2015) Parameter optimization in an intermediate coupled climate model with biased physics. J Clim 28(3):1227–1247.  https://doi.org/10.1175/JCLI-D-14-00348.1 CrossRefGoogle Scholar
  65. Zhang X, Zhang S, Liu Z, Wu X, Han G (2016) Correction of biased climate simulated by biased physics through parameter estimation in an intermediate coupled model. Clim Dyn 47:1899–1912.  https://doi.org/10.1007/s00382-015-2939-9 CrossRefGoogle Scholar
  66. Zhao Y, Deng X, Yang S (2016) Impact of the optimal observational time window on parameter optimization and climate prediction: simulation with a simple climate model. Nonlinear Process Geophys Discuss 10:10.  https://doi.org/10.5194/npg-2015-76 CrossRefGoogle Scholar
  67. Zhao Y et al (2017) Impact of an observational time window on coupled data assimilation: Simulation with a simple climate model. Nonlinear Process Geophys 24:681–694.  https://doi.org/10.5194/npg-24-681-2017 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuxin Zhao
    • 1
  • Xiong Deng
    • 1
    • 2
  • Shaoqing Zhang
    • 1
    • 3
    • 4
    Email author
  • Zhengyu Liu
    • 2
  • Chang Liu
    • 1
  1. 1.College of AutomationHarbin Engineering UniversityHarbinPeople’s Republic of China
  2. 2.Atmospheric Science Program, Department of GeographyOhio State UniversityColumbusUSA
  3. 3.Physical Oceanography Laboratory/CIMST, and College of Atmosphere and OceanOcean University of ChinaQingdaoPeople’s Republic of China
  4. 4.Qingdao National Laboratory for Marine Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations