Advertisement

Future precipitation changes over Panama projected with the atmospheric global model MRI-AGCM3.2

  • Shoji KusunokiEmail author
  • Tosiyuki Nakaegawa
  • Reinhardt Pinzón
  • Javier E. Sanchez-Galan
  • José R. Fábrega
Article

Abstract

Future change in precipitation over Panama was investigated with 20-km and 60-km mesh global atmospheric models. The present-day climate simulations were conducted for 21 years from 1983 through 2003, driving models by observed historical sea surface temperatures (SST). The future climate simulations were conducted for 21 years from 2079 through 2099, driving models by future SST distributions projected by the Atmosphere–Ocean General Circulation Models that participated in the Fifth phase of the Coupled Model Intercomparison Project. The uncertainty of future precipitation change was evaluated by ensemble simulations giving four different SST patterns and three different cumulus convection schemes. In the future, precipitation increases over the central and eastern part of Panama from May to November corresponding to the rainy season. Uncertainty of future precipitation change depends on cumulus convection schemes rather than SST distributions. Increase of precipitation over most regions can be attributed to the increase of water vapor transport originated in the Caribbean Sea which converges over Panama. Precipitation averaged over the Panama canal, the Gatun lake and related river basin (79.0°–80.5°W, 8.5°–9.5°N) will increase during most of the rainy season persisting from May to October, while precipitation in dry season persisting from December to April does not change in the future. Intense precipitation increases, but the possibility of drought increases. These results suggest that the planning of water resource management for the Panama canal may require some modifications in the future.

Keywords

Precipitation Panama Global warming projection High resolution model 

Notes

Acknowledgements

This work was supported by the research project “ Integrated Research Program for Advanced Climate Modeling” under the framework of the TOUGOU Program of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan. We appreciate advice and comments by anonymous reviewers which enhanced the quality of manuscript. We also thanks the colleagues of global climate modelling in MRI. The National System of Investigation (SNI) of Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT) supports the research activities by J. E. Sanchez-Galan, R. Pinzón, and J. R. Fábrega.

Supplementary material

382_2019_4842_MOESM1_ESM.doc (9.2 mb)
Supplementary material 1 (DOC 9426 kb)

References

  1. Adler RF, Huffman GJ, Chang A, Ferrano R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The Version-2 Global Precipitation Climatology Preject (GPCP) monthly precipitation analysis (1979–present). J Hydrometeor 4:1147–1167.  https://doi.org/10.1175/1525-7541(2003)004%3c1147:TVGPCP%3e2.0.CO;2 CrossRefGoogle Scholar
  2. Alfaro EJ (2002) Some characteristics of the annual precipitation cycle in Central America and their relationships with its surrounding tropical oceans. Top Meteoro Oceanog 9:88–103. http://hdl.handle.net/10669/15428
  3. Amador JA (1998) A climatic feature of the tropical Americas: the trade wind easterly jet. Top Meteor Oceanogr 5:91–102Google Scholar
  4. Amador JA (2008) The Intra-Americas Seas low-level jet (IALLJ): overview and future research. Ann N Y Acad Sci 1146:153–188.  https://doi.org/10.1196/annals.1446.012 CrossRefGoogle Scholar
  5. Amador JA, Alfaro EJ, Lizano OG, Magana VO (2006) Atmospheric forcing of the eastern tropical Pacific: a review. Prog Oceanogr 69:101–142.  https://doi.org/10.1016/j.pocean.2006.03.007 CrossRefGoogle Scholar
  6. Amador JA, Duran-Quesada AM, Rivera ER, Mora G, Saenz F, Calderon B, Mora N (2016a) The easternmost tropical Pacific. Part II: seasonal and intraseasonal modes of atmospheric variability. Rev Biol Trop 64:S23–S57.  https://doi.org/10.15517/rbt.v64i1.23409 CrossRefGoogle Scholar
  7. Amador JA, Rivera ER, Duran-Quesada AM, Mora G, Saenz F, Calderon B, Mora N (2016b) The easternmost tropical Pacific. Part I: a climate review. Rev de Biol Trop 64:S1–S22.  https://doi.org/10.15517/rbt.v64i1.23407
  8. Bengtsson L, Hodges KI, Keenlyside N (2009) Will extratropical storms intensify in a warmer climate? J Clim 22:2276–2301.  https://doi.org/10.1175/2008JCLI2678.1 CrossRefGoogle Scholar
  9. Christensen JH, Krishna Kumar K, Aldrian E, An S-I, Cavalcanti IFA, de Castro M, Dong W, Goswami P, Hall A, Kanyanga JK, Kitoh A, Kossin J, Lau N-C, Renwick J, Stephenson DB, Xie S-P, Zhou T (2013) Chapter 14; Climate Phenomena and their Relevance for Future Regional Climate Change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  10. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Chapter 12; Long-term Climate Change: Projections, Commitments and Irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  11. Cook KH, Vizy EK (2010) Hydrodynamics of the Caribbean Low-Level Jet and its relationship to precipitation. J Clim 23:1477–1494.  https://doi.org/10.1175/2009JCLI3210.1 CrossRefGoogle Scholar
  12. Endo H, Kitoh A, Ose T, Mizuta R, Kusunoki S (2012) Future changes and uncertainties in Asian precipitation simulated by multiphysics and multi-sea surface temperature ensemble experiments with high-resolution Meteorological Research Institute atmospheric general circulation models (MRI-AGCMs). J Geophys Res 117:D16118.  https://doi.org/10.1029/2012JD017874 CrossRefGoogle Scholar
  13. Enfield DB, Alfaro EJ (1999) The dependence of Caribbean rainfall on the interaction of the tropical Atlantic and Pacific Oceans. J Clim 12:2093–2103.  https://doi.org/10.1175/1520-0442(1999)012%3c2093:TDOCRO%3e2.0.CO;2 CrossRefGoogle Scholar
  14. Fábrega J, Nakaegawa T, Pinzón R, Nakayama K, Arakawa O, SOUSEI Theme-C modeling group (2013) Hydroclimate projections for Panama in the 21st Century. Hydrol Res Lett 7:23–29.  https://doi.org/10.3178/hrl.7.23 CrossRefGoogle Scholar
  15. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Chapter 9; Evaluation of Climate Models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  16. Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212.  https://doi.org/10.3354/cr019193 CrossRefGoogle Scholar
  17. Gamble DW, Curtis S (2008) Caribbean precipitation: review, model and prospect. Prog Phys Geogr 32:265–276.  https://doi.org/10.1177/0309133308096027 CrossRefGoogle Scholar
  18. Giannini A, Kushnir Y, Cane MA (2000) Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J Clim 13:297–311.  https://doi.org/10.1175/1520-0442(2000)013%3c0297:IVOCRE%3e2.0.CO;2 CrossRefGoogle Scholar
  19. Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113:D06104.  https://doi.org/10.1029/2007JD008972 CrossRefGoogle Scholar
  20. Graham NE, Georgakakos KP, Vargas C, Echevers M (2006) Simulating the value of El Niño forecasts for the Panama Canal. Adv Water Resour 29:1665–1677.  https://doi.org/10.1016/j.advwatres.2005.12.005 CrossRefGoogle Scholar
  21. Hastenrath S (1978) On modes of tropical circulation and climate anomalies. J Atmos Sci 35:2222–2231.  https://doi.org/10.1175/1520-0469(1978)035%3c2222:OMOTCA%3e2.0.CO;2 CrossRefGoogle Scholar
  22. Hidalgo HG, Alfaro EJ (2015) Skill of CMIP5 climate models in reproducing 20th century basic climate features in Central America. Int J Climatol 35:3397–3421.  https://doi.org/10.1002/joc.4216 CrossRefGoogle Scholar
  23. Hidalgo HG, Amador JA, Alfaro EJ, Quesada B (2013) Hydrological climate change projections for Central America. J Hydrol 495:94–112.  https://doi.org/10.1016/j.jhydrol.2013.05.004 CrossRefGoogle Scholar
  24. Hidalgo HG, Alfaro EJ, Quesada-Montano B (2017) Observed (1970–1999) climate variability in Central America using a high-resolution meteorological dataset with implication to climate change studies. Clim Change 141:13–28.  https://doi.org/10.1007/s10584-016-1786-y CrossRefGoogle Scholar
  25. Huffman GJ, Adler RF, Morrissey MM, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeor 2:36–50.  https://doi.org/10.1175/1525-7541(2001)002%3c0036:GPAODD%3e2.0.CO;2 CrossRefGoogle Scholar
  26. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeor 8:38–55.  https://doi.org/10.1175/JHM560.1 CrossRefGoogle Scholar
  27. Imbach P, Molina L, Locatelli B, Roupsard O, Mahé G, Neilson R, Corrales L, Scholze M, Ciais P (2012) Modeling potential equilibrium states of vegetation and terrestrial water cycle of Mesoamerica under climate change scenarios. J Hydrometeor 13:665–680.  https://doi.org/10.1175/JHM-D-11-023.1 CrossRefGoogle Scholar
  28. Imbach P, Chou SC, Lyra A, Rodrigues D, Rodriguez D, Latinovic D, Siqueira G, Silva A, Garofolo L, Georgiou S (2018) Future climate change scenarios in Central America at high spatial resolution. PLoS One 13(4):e0193570.  https://doi.org/10.1371/journal.pone.0193570 CrossRefGoogle Scholar
  29. IPCC (Intergovermental Panel on Climate Change) (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Cambridge University Press, Cambridge, New YorkGoogle Scholar
  30. IPCC (2000) Special report on emissions scenarios. A special report of working group III of the intergovernmental panel on climate change. In: Nakicenovic N, Alcamo J, Davis G, deVries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Yong Jung T, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, and Dadi Z (eds). Cambridge University Press, CambridgeGoogle Scholar
  31. Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802.  https://doi.org/10.1175/1520-0469(1990)047%3c2784:AODEPM%3e2.0.CO;2 CrossRefGoogle Scholar
  32. Kusunoki S (2016) Is the global atmospheric model MRI-AGCM3.2 better than the CMIP5 atmospheric models in simulating precipitation over East Asia? Clim Dyn.  https://doi.org/10.1007/s00382-016-3335-9
  33. Kusunoki S (2017a) Future changes in precipitation over East Asia projected by the global atmospheric model MRI-AGCM3.2. Clim Dyn.  https://doi.org/10.1007/s00382-016-3499-3
  34. Kusunoki S (2017b) Future changes in global precipitation projected by the atmospheric model MRI-AGCM3.2H with a 60-km size. Atmosphere 8:93.  https://doi.org/10.3390/atmos8050093
  35. Kusunoki S, Arakawa O (2015) Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia? J Clim 28:5601–5621.  https://doi.org/10.1175/JCLI-D-14-00585.1 CrossRefGoogle Scholar
  36. Kusunoki S, Mizuta R (2013) Changes in precipitation intensity over East Asia during the 20th and 21st centuries simulated by a global atmospheric model with a 60 km grid size. J Geophys Res Atmos 118:11007–11016.  https://doi.org/10.1002/jgrd.50877 CrossRefGoogle Scholar
  37. Lambert SJ, Boer GJ (2001) CMIP1 evaluation and intercomparison of coupled climate models. Clim Dyn 17:83–106.  https://doi.org/10.1007/PL00013736 CrossRefGoogle Scholar
  38. Magaña V, Amador JA, Medina S (1999) The midsummer drought over Mexico and Central America. J Clim 12:1577–1588.  https://doi.org/10.1175/1520-0442(1999)012%3c1577:TMDOMA%3e2.0.CO;2 CrossRefGoogle Scholar
  39. Maldonado T, Alfaro EJ, Hidalgo HG (2018) A review of the main drivers and variability of Central America’s climate and seasonal forecast systems. Rev de Biol Trop 66(Suppl. 1):S153–S175.  https://doi.org/10.15517/rbt.v66i1.33294
  40. Mitchell TP, Wallace JM (1992) The annual cycle in equatorial convection and sea surface temperature. J Clim 5:1140–1156.  https://doi.org/10.1175/1520-0442(1992)005%3c1140:TACIEC%3e2.0.CO;2 CrossRefGoogle Scholar
  41. Mizuta R, Adachi Y, Yukimoto S, Kusunoki S (2008) Estimation of the future distribution of sea surface temperature and sea ice using the CMIP3 multi-model ensemble mean. Technical Reports of the Meteorological Research Institute, vol 56, p 28. http://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_56/56_en.html
  42. Mizuta R, Arakawa O, Ose T, Kusunoki S, Endo H, Kitoh A (2014) Classification of CMIP5 future climate responses by the tropical sea surface temperature changes. SOLA 10:167–171.  https://doi.org/10.2151/sola.2014-035 CrossRefGoogle Scholar
  43. Murphy MJ, Georgakakos KP, Shamir E (2014) Climatological analysis of December rainfall in the Panama Canal watershed. Int J Climatol 34:403–415.  https://doi.org/10.1002/joc.3694 CrossRefGoogle Scholar
  44. Nakaegawa T, Kitoh A, Ishizaki Y, Kusunoki S, Murakami H (2014a) Caribbean low-level jets and accompanying moisture fluxes in a global warming climate projected with CMIP3 multi-model ensemble and fine-mesh atmospheric general circulation models. Int J Climatol 34:964–977.  https://doi.org/10.1002/joc.3733 CrossRefGoogle Scholar
  45. Nakaegawa T, Kitoh A, Kusunoki S, Murakami H, Arakawa O (2014b) Hydroclimate change over Central America and the Caribbean in a global warming climate projected with 20-km and 60-km mesh MRI atmospheric general circulation models. Pap Meteorol Geophys 65:15–33.  https://doi.org/10.2467/mripapers.65.15
  46. Nakaegawa T, Kitoh A, Murakami H, Kusunoki S (2014c) Maximum 5-day rainfall total and the maximum number of consecutive dry days over Central America in the future climate projected by an atmospheric general circulation model with three different horizontal resolutions. Theor Appl Climatol 116:155–168.  https://doi.org/10.1007/s00704-013-0934-9
  47. Nakaegawa T, Arakawa O, Kamiguchi K (2015) Investigation of climatological onset and withdrawal of the rainy season in Panama Based on a daily gridded precipitation dataset with a high horizontal resolution. J Clim 28:2745–2763.  https://doi.org/10.1175/JCLI-D-14-00243.1 CrossRefGoogle Scholar
  48. Neelin JD, Munnich M, Su H, Meyerson JE, Holloway CE (2006) Tropical drying trends in global warming models and observations. Proc Natl Acad Sci 103:6110–6115.  https://doi.org/10.1073/pnas.0601798103 CrossRefGoogle Scholar
  49. Okada Y, Takemi Ishikawa H, Kusunoki S, Mizuta R (2017) Future changes in atmospheric conditions for the seasonal evolution of the Baiu as revealed from projected AGCM experiments. J Meteor Soc Jpn 95:239–260.  https://doi.org/10.2151/jmsj.2017-013 CrossRefGoogle Scholar
  50. Pinzón R, Hibino K, Takayabu I, Nakaegawa T (2017) Virtual experiencing future climate changes in Central America with MRI-AGCM: climate analogues study. Hydrol. Res Lett 11:106–113.  https://doi.org/10.3178/hrl.11.107 CrossRefGoogle Scholar
  51. Randall DA, Pan DM (1993) Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic closure. In: The representation of cumulus convection in numerical models, meteorological monographs, vol 24, no 46, Chapter 11, pp 137–147Google Scholar
  52. Rauscher SA, Giorgi F, Diffenbaugh NS, Seth A (2008) Extension and Intensification of the Meso-American mid-summer drought in the twenty-first century. Clim Dyn 31:551–571.  https://doi.org/10.1007/s00382-007-0359-1 CrossRefGoogle Scholar
  53. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407.  https://doi.org/10.1029/2002JD002670 CrossRefGoogle Scholar
  54. Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Am Meteor Soc 89:303–311.  https://doi.org/10.1175/BAMS-89-3-303 CrossRefGoogle Scholar
  55. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Nino/Southern Oscillation. Mon Weather Rev 115:1606–1626.  https://doi.org/10.1175/1520-0493(1987)115%3c1606:GARSPP%3e2.0.CO;2 CrossRefGoogle Scholar
  56. Shibata K, Deushi M, Sekiyama TT, Yoshimura H (2004) Development of an MRI chemical transport model for the study of stratospheric chemistry. Pap Meteor Geophys 55:75–119.  https://doi.org/10.2467/mripapers.55.75 CrossRefGoogle Scholar
  57. Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner AG, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744.  https://doi.org/10.1007/S00382-012-1607-6 CrossRefGoogle Scholar
  58. Storch HV, Zwiers FW (1999) Section 9 Analysis of variance. In: Storch HV, Zwiers FW (eds) Statistical analysis in climate research. Cambridge University Press, Cambridge, pp 171–192CrossRefGoogle Scholar
  59. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192.  https://doi.org/10.1029/2000JD90071 CrossRefGoogle Scholar
  60. Taylor MA, Alfaro E (2005) Climate of Central America and the Caribbean. The encyclopedia of world climatology. J Oliver Ed Spring Press.  https://doi.org/10.1007/1-4020-3266-8
  61. Taylor MA, Stephenson TS, Owino A, Chen AA, Campbell JD (2011) Tropical gradient influences on Caribbean rainfall. J Geophys Res 116:D00Q08.  https://doi.org/10.1029/2010JD015580
  62. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800.  https://doi.org/10.1175/1520-0493(1989)117%3c1779:ACMFSF%3e2.0.CO;2 CrossRefGoogle Scholar
  63. Wang C, Enfield DB (2001) The tropical Western Hemisphere warm pool. Geophys Res Lett 28:1635–1638.  https://doi.org/10.1029/2000GL011763 CrossRefGoogle Scholar
  64. Wang C, Lee SK, Enfield DB (2007) Impact of the Atlantic warm pool on the summer climate of the Western Hemisphere. J Clim 20:5021–5040.  https://doi.org/10.1175/LCLI4304.1 CrossRefGoogle Scholar
  65. Wang C, Lee SK, Enfield DB (2008) Climate response to anomalously large and small Atlantic warm pools during the summer. J Clim 21:2437–2450.  https://doi.org/10.1175/2007JCLI2029.1 CrossRefGoogle Scholar
  66. Xie P, Arkin P (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull Am Meteor Soc 78:2539–2558.  https://doi.org/10.1175/1520-0477(1997)078%3c2539:GPAYMA%3e2.0.CO;2 CrossRefGoogle Scholar
  67. Yoshimura H, Mizuta R, Murakami H (2015) A spectral cumulus parameterization scheme interpolating between two convective updrafts with semi-lagrangian calculation of transport by compensatory subsidence. Mon Weather Rev 143:597–621.  https://doi.org/10.1175/MWR-D-14-00068.1 CrossRefGoogle Scholar
  68. Yukimoto S, Yoshimura H, Hosaka M, Sakami T, Tsujino H, Hirabara M, Tanaka T, Deushi M, Obata A, Nakano H, Adachi Y, Shindo E, Yabu S, Ose T, Kitoh A (2011) Meteorological Research Institute–Earth System Model version 1 (MRI-ESM1)—MODEL description. Technical reports of the Meteorological Research Institute, vol 64, p 88. http://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_64/index_en.html

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Global Atmosphere Ocean Research DepartmentMeteorological Research InstituteTsukubaJapan
  2. 2.Faculty of Societal Safety SciencesKansai UniversityOsakaJapan
  3. 3.Center for Hydraulic and Hydrotechnical Research (CIHH)Technological University of PanamaPanamaRepublic of Panama
  4. 4.Agroindustrial Research and Production Center (CEPIA)Technological University of PanamaPanamaRepublic of Panama
  5. 5.Institute of Advanced Scientific Research and High Technology (INDICASAT)Ciudad del SaberPanamaRepublic of Panama

Personalised recommendations