On the min–max estimation of mean daily temperatures

  • Anastasios A. TsonisEmail author
  • Xinnong Pan
  • Geli Wang
  • Catherine Nicolis


Modern data analyses of hourly temperature records reveal the existence, in addition to the daily cycle, of multiple forcings of different frequencies. As a result the routine approach of estimating daily local mean temperature directly from the average of the minimum and maximum is heavily compromised. A simple dynamical model subjected to two periodic forcings of different frequencies, amplitudes and phases is solved analytically and shown to induce substantial deviations from the min–max method that depend crucially on the values of the parameters involved.


Mean daily temperature Slow feature analysis Driving forces 



Part of this work was supported by the National Key R&D Program of China (2017YFC1501804), the National Natural Science Foundation of China (91737102 and 41575058).

Supplementary material

382_2019_4757_MOESM1_ESM.docx (5.8 mb)
Supplementary material 1 (DOCX 5954 kb)


  1. Berkes P, Wiskott L (2005) Slow feature analysis yields a rich repertoire of complex cells. J Vis 5(6):579–602CrossRefGoogle Scholar
  2. Bernhardt J, Carleton AM, LaMagna C (2018) A comparison of daily temperature-averaging methods: spatial variability and recent change for the CONUS. J Clim. Google Scholar
  3. Dall’Amico M, Horsteiner M (2006) A simple method for estimating daily and monthly mean temperatures from daily minima and maxima. Int J Climatol 26:1929–1936CrossRefGoogle Scholar
  4. Gershunov A, Cayan DR, Iacobellis S (2009) The great heat wave over California and Nevada: signals of an increasing trend. J Clim 22:6181–6203CrossRefGoogle Scholar
  5. Guirguis K, Gershunov A, Cayan DR, Pierce D (2017) Heat wave probability in the changing climate of the Southwest US. Clim Dyn. Google Scholar
  6. Ma Y, Guttorp P (2013) Estimating daily mean temperature from synoptic climate observations. Int J Climatol 33:1264–1269CrossRefGoogle Scholar
  7. Torrence C, Combo GP (1998) A practical guide to wavelet analysis. Bull Am Meteor Soc 79(1):61–78CrossRefGoogle Scholar
  8. Wiskott L (2003) Estimating driving forces of nonstationary time series with slow feature analysis.
  9. Wiskott L, Sejnowski TJ (2002) Slow feature analysis: unsupervised learning of invariance. Neural Comput 14:715–770CrossRefGoogle Scholar
  10. Wiskott L et al (2011) Slow feature analysis. Scholarpedia 6(4):5282. CrossRefGoogle Scholar
  11. Yang P, Wang G, Zhang F, Zhou X (2015) Causality of global warming seen from observations: a scale analysis of driving force of the surface air temperature time series in the Northern Hemisphere. Clim Dyn. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Anastasios A. Tsonis
    • 1
    • 2
    Email author
  • Xinnong Pan
    • 3
    • 4
  • Geli Wang
    • 3
  • Catherine Nicolis
    • 5
  1. 1.Department of Mathematical Sciences, Atmospheric Sciences GroupUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.Hydrologic Research CenterSan DiegoUSA
  3. 3.Key Laboratory of Middle Atmosphere and Global Environment Observation (LAGEO)Institute of Atmospheric Physics, Chinese Academy of SciencesBeijingChina
  4. 4.University of Chinese Academy of SciencesBeijingChina
  5. 5.Institut Royal Meteorologique de BelgiqueBrusselsBelgium

Personalised recommendations