Advertisement

Simulating the convective precipitation diurnal cycle in North America’s current and future climate

  • Lucia Scaff
  • Andreas F. Prein
  • Yanping LiEmail author
  • Changhai Liu
  • Roy Rasmussen
  • Kyoko Ikeda
Article

Abstract

Convection-permitting models (CPM) with at least 4 km horizontal grid spacing enable the cumulus parameterization to be switched off and thus simulate convective processes more realistically than coarse resolution models. This study investigates if a North American scale CPM can reproduce the observed warm season precipitation diurnal cycle on a climate scale. Potential changes in the precipitation diurnal cycle characteristics at the end of the twenty first century are also investigated using the pseudo global warming approach under a high-end anthropogenic emission scenario (RCP8.5). Simulations are performed with the Advanced Research Weather Research and Forecasting (ARW-WRF) model with 4-km horizontal grid spacing. Results from the WRF historical run (2001–2013) are evaluated against hourly precipitation from 2903 weather stations and a gridded hourly precipitation product in the U.S. The magnitude and timing of the diurnal cycle peak are realistically simulated in most of the U.S. and southern Canada. The model also captures the transition from afternoon precipitation peaks eastward of the Rocky Mountains to night peaks in the central U.S., which is related to propagating mesoscale convective systems. However, the historical climate simulation does not capture the observed early morning peaks in the central U.S. and overestimates the magnitude of the diurnal precipitation peak in the southeast region. In the simulation of the future climate, both the precipitation amount of the diurnal cycle and precipitation intensity increase throughout the domain, along with an increase in precipitation frequency in the northern region of the domain in May. These increases indicate a clear intensification of the hydrologic cycle during the warm season with potential impacts on future water resources, agriculture, and flooding.

Keywords

Convection-permitting modeling Precipitation diurnal cycle North America Weather Research and Forecasting model Pseudo global warming approach Climate change 

Notes

Acknowledgements

We gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding the Changing Cold Regions Network (CCRN) through their Climate Change and Atmospheric Research (CCAR) Initiative, as well as the Global Water Future (GWF) project and Global Institute of Water Security (GIWS) at University of Saskatchewan. L. Scaff acknowledges the support from CONICYT-Becas Chile scholarship program. L. Scaff appreciates S. Krogh for providing valuable comments to improve this study. Y. Li acknowledges the support from the NSERC Discovery Grant. A. Prein, C. Liu, R. Rasmussen, and K. Ikeda appreciate the support from the Water System Program at the National Center for Atmospheric Research (NCAR). The National Science Foundation sponsors NCAR. This project was performed at the NCAR facilities funded through NSF-Water System Program. We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR’s Computational and Information System Laboratory, sponsored by the National Science Foundation.

Supplementary material

382_2019_4754_MOESM1_ESM.pdf (1.7 mb)
Supplementary material 1 (PDF 1756 kb)
382_2019_4754_MOESM2_ESM.pdf (57.1 mb)
Supplementary material 2 (PDF 58428 kb)

References

  1. Baldauf M, Seifert A, Förstner J et al (2011) Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon Weather Rev 139:3887–3905.  https://doi.org/10.1175/mwr-d-10-05013.1 CrossRefGoogle Scholar
  2. Ban N, Schmidli J, Schär C (2014) Evaluation of the new convective-resolving regional climate modeling approach in decade-long simulations. J Geophys Res Atmos 119:7889–7907.  https://doi.org/10.1002/2014jd021478.received CrossRefGoogle Scholar
  3. Ban N, Schmidli J, Schär C (2015) Heavy precipitation in a changing climate: does short-term summer precipitation increase faster? Geophys Res Lett 42:1165–1172.  https://doi.org/10.1002/2014gl062588 CrossRefGoogle Scholar
  4. Barbero R, Fowler HJ, Lenderink G, Blenkinsop S (2017) Is the intensification of precipitation extremes with global warming better detected at hourly than daily resolutions? Geophys Res Lett 44:974–983.  https://doi.org/10.1002/2016gl071917 CrossRefGoogle Scholar
  5. Barthlott C, Corsmeier U, Meißner C et al (2006) The influence of mesoscale circulation systems on triggering convective cells over complex terrain. Atmos Res 81:150–175.  https://doi.org/10.1016/j.atmosres.2005.11.010 CrossRefGoogle Scholar
  6. Brisson E, van Weverberg K, Demuzere M et al (2016) How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics? Clim Dyn.  https://doi.org/10.1007/s00382-016-3012-z Google Scholar
  7. Browning KA, Blyth AM, Clark PA et al (2007) The convective storm initiation project. Bull Am Meteorol Soc 88:1939–1955.  https://doi.org/10.1175/bams-88-12-1939 CrossRefGoogle Scholar
  8. Carbone RE, Tuttle JD (2008) Rainfall occurrence in the U.S. warm season: the diurnal cycle. J Clim 21:4132–4146.  https://doi.org/10.1175/2008jcli2275.1 CrossRefGoogle Scholar
  9. Carbone RE, Wilson JW, Keenan TD, Hacker JM (2000) Tropical island convection in the absence of significant topography. Part I: life cycle of diurnally forced convection. Mon Weather Rev 128:3459–3480.  https://doi.org/10.1175/1520-0493(2000)128%3c3459:ticita%3e2.0.co;2 CrossRefGoogle Scholar
  10. Carbone RE, Tuttle JD, Ahijevych DA, Trier SB (2002) Inferences of predictability associated with warm season precipitation episodes. J Atmos Sci 59:2033–2056.  https://doi.org/10.1175/1520-0469(2002)059%3c2033:iopaww%3e2.0.co;2 CrossRefGoogle Scholar
  11. Coniglio MC, Correia J, Marsh PT, Kong F (2013) Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations. Weather Forecast 28:842–862.  https://doi.org/10.1175/waf-d-12-00103.1 CrossRefGoogle Scholar
  12. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597.  https://doi.org/10.1002/qj.828 CrossRefGoogle Scholar
  13. Déqué M, Rowell DP, Lüthi D et al (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81:53–70.  https://doi.org/10.1007/s10584-006-9228-x CrossRefGoogle Scholar
  14. Dirmeyer PA, Cash BA, Kinter JL et al (2012) Simulating the diurnal cycle of rainfall in global climate models: resolution versus parameterization. Clim Dyn 39:399–418.  https://doi.org/10.1007/s00382-011-1127-9 CrossRefGoogle Scholar
  15. Duchon CE, Essenberg GR (2001) Comparative rainfall observations from pit and aboveground rain gauges with and without wind shields. Water Resour Res 37:3253–3263.  https://doi.org/10.1029/2001wr000541 CrossRefGoogle Scholar
  16. Fosser G, Khodayar S, Berg P (2014) Benefit of convection permitting climate model simulations in the representation of convective precipitation. Clim Dyn 44:45–60.  https://doi.org/10.1007/s00382-014-2242-1 CrossRefGoogle Scholar
  17. Fulton RA, Breidenbach JP, Seo D-J et al (1998) The WSR-88D rainfall algorithm. Weather Forecast 13:377–395.  https://doi.org/10.1175/1520-0434(1998)013%3c0377:twra%3e2.0.co;2 CrossRefGoogle Scholar
  18. Geerts B, Parsons D, Ziegler CL et al (2017) The 2015 plains elevated convection at night field project. Bull Am Meteorol Soc 98:767–786.  https://doi.org/10.1175/bams-d-15-00257.1 CrossRefGoogle Scholar
  19. Gensini VA, Mote TL (2014) Estimations of hazardous convective weather in the United States using dynamical downscaling. J Clim 27:6581–6589.  https://doi.org/10.1175/jcli-d-13-00777.1 CrossRefGoogle Scholar
  20. Gensini VA, Mote TL (2015) Downscaled estimates of late 21st century severe weather from CCSM3. Clim Change 129:307–321.  https://doi.org/10.1007/s10584-014-1320-z CrossRefGoogle Scholar
  21. Groisman PY, Knight RW, Karl TR (2012) Changes in intense precipitation over the central United States. J Hydrometeorol 13:47–66.  https://doi.org/10.1175/jhm-d-11-039.1 CrossRefGoogle Scholar
  22. Haberlie AM, Ashley WS (2019) Climatological representation of mesoscale convective systems in a dynamically downscaled climate simulation. Int J Climatol 39:1144–1153.  https://doi.org/10.1002/joc.5880 CrossRefGoogle Scholar
  23. Hammer G, Steurer P (2000) Data documentation for hourly precipitation data TD-3240. National Climatic Data Center, Asheville. https://rda.ucar.edu/datasets/ds505.0/docs/olderversions/2000nov.td3240.pdf Google Scholar
  24. Hara M, Yoshikane T, Kawase H, Kimura F (2008) Estimation of the impact of global warming on snow depth in Japan by the pseudo-global-warming method. Hydrol Res Lett 2:61–64.  https://doi.org/10.3178/hrl.2.61 CrossRefGoogle Scholar
  25. Hohenegger C, Brockhaus P, Schär C (2008) Towards climate simulations at cloud-resolving scales. Meteorol Zeitschrift 17:383–394CrossRefGoogle Scholar
  26. Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341.  https://doi.org/10.1175/mwr3199.1 CrossRefGoogle Scholar
  27. Hoogewind KA, Baldwin ME, Trapp RJ (2017) The impact of climate change on hazardous convective weather in the United States: insight from high-resolution dynamical downscaling. J Clim 30:10081–10100.  https://doi.org/10.1175/jcli-d-16-0885.1 CrossRefGoogle Scholar
  28. Iacono MJ, Delamere JS, Mlawer EJ et al (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res Atmos 113:2–9.  https://doi.org/10.1029/2008jd009944 CrossRefGoogle Scholar
  29. Jacob D, Petersen J, Eggert B et al (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14:563–578.  https://doi.org/10.1007/s10113-013-0499-2 CrossRefGoogle Scholar
  30. Keenan TD, Carbone RE (2008) Propagation and diurnal evolution of warm season cloudiness in the Australian and maritime continent region. Mon Weather Rev 136:973–994.  https://doi.org/10.1175/2007mwr2152.1 CrossRefGoogle Scholar
  31. Kendon EJ, Roberts NM, Senior CA, Roberts MJ (2012) Realism of rainfall in a very high-resolution regional climate model. J Clim 25:5791–5806.  https://doi.org/10.1175/jcli-d-11-00562.1 CrossRefGoogle Scholar
  32. Kendon EJ, Roberts NM, Fowler HJ et al (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat Clim Change 4:570–576.  https://doi.org/10.1038/nclimate2258 CrossRefGoogle Scholar
  33. Kendon EJ, Ban N, Roberts NM et al (2017) Do convection-permitting regional climate models improve projections of future precipitation change? BAM 98:79–94.  https://doi.org/10.1175/bams-d-15-0004.1 CrossRefGoogle Scholar
  34. Lackmann GM (2015) Hurricane Sandy before 1900 and after 2100. Bull Am Meteorol Soc 96:547–560.  https://doi.org/10.1175/bams-d-14-00123.1 CrossRefGoogle Scholar
  35. Laing AG, Fritsch JM (1997) The global population of mesoscale convective complexes. Q J R Meteorol Soc 123:389–405.  https://doi.org/10.1002/qj.49712353807 CrossRefGoogle Scholar
  36. Langhans W, Schmidli J, Fuhrer O et al (2013) Long-term simulations of thermally driven flows and orographic convection at convection-parameterizing and cloud-resolving resolutions. J Appl Meteorol Climatol 52:1490–1510.  https://doi.org/10.1175/jamc-d-12-0167.1 CrossRefGoogle Scholar
  37. Li Y, Carbone RE (2015) Offshore propagation of coastal precipitation. J Atmos Sci 72:4553–4568.  https://doi.org/10.1175/jas-d-15-0104.1 CrossRefGoogle Scholar
  38. Li Y, Smith RB (2010a) Observation and theory of the diurnal continental thermal tide. J Atmos Sci 67:2752–2765.  https://doi.org/10.1175/2010jas3384.1 CrossRefGoogle Scholar
  39. Li Y, Smith RB (2010b) The detection and significance of diurnal pressure and potential vorticity anomalies east of the rockies. J Atmos Sci 67:2734–2751.  https://doi.org/10.1175/2010jas3423.1 CrossRefGoogle Scholar
  40. Li Y, Smith RB, Grubišić V (2009) Using surface pressure variations to categorize diurnal valley circulations: experiments in Owens Valley. Mon Weather Rev 137:1753–1769.  https://doi.org/10.1175/2008mwr2495.1 CrossRefGoogle Scholar
  41. Lin Y, Mitchell KE (2005) The NCEP stage II/IV hourly precipitation analyses: development and applications. In: Preparation 19th conference hydrology American Meteorology Society San Diego, CA, 9–13 January 2005, Paper 12–25Google Scholar
  42. Liu C, Ikeda K, Rasmussen R et al (2017) Continental-scale convection-permitting modeling of the current and future climate of North America. Clim Dyn.  https://doi.org/10.1007/s00382-016-3327-9 Google Scholar
  43. Mahoney K, Alexander M, Scott JD, Barsugli J (2013) High-resolution downscaled simulations of warm-season extreme precipitation events in the colorado front range under past and future climates. J Clim 26:8671–8689.  https://doi.org/10.1175/jcli-d-12-00744.1 CrossRefGoogle Scholar
  44. Mooney PA, Broderick C, Bruyère CL et al (2017) Clustering of observed diurnal cycles of precipitation over the United States for evaluation of a WRF multiphysics regional climate ensemble. J Clim 30:9267–9286.  https://doi.org/10.1175/jcli-d-16-0851.1 CrossRefGoogle Scholar
  45. Niu GY, Yang ZL, Mitchell KE et al (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res Atmos 116:1–19.  https://doi.org/10.1029/2010jd015139 CrossRefGoogle Scholar
  46. Pan X, Yang D, Li Y et al (2016) Bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada. Cryosphere 10:2347–2360.  https://doi.org/10.5194/tc-10-2347-2016 CrossRefGoogle Scholar
  47. Parker WS (2016) Reanalyses and observations: what’s the difference? Bull Am Meteorol Soc 97:1565–1572.  https://doi.org/10.1175/bams-d-14-00226.1 CrossRefGoogle Scholar
  48. Prein AF, Holland GJ, Rasmussen RM et al (2013) Importance of regional climate model grid spacing for the simulation of heavy precipitation in the Colorado headwaters. J Clim 26:4848–4857.  https://doi.org/10.1175/jcli-d-12-00727.1 CrossRefGoogle Scholar
  49. Prein AF, Langhans W, Fosser G et al (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys 53:323–361.  https://doi.org/10.1002/2014rg000475 CrossRefGoogle Scholar
  50. Prein AF, Rasmussen RM, Ikeda K et al (2016) The future intensification of hourly precipitation extremes. Nat Clim Change 7:1–6.  https://doi.org/10.1038/nclimate3168 Google Scholar
  51. Prein AF, Liu C, Ikeda K et al (2017) Simulating North American mesoscale convective systems with a convection-permitting climate model. Clim Dyn.  https://doi.org/10.1007/s00382-017-3993-2 Google Scholar
  52. Rasmussen R, Baker B, Kochendorfer J et al (2012) How well are we measuring snow? The NOAA/FAA/NCAR winter precipitation test bed. Bull Am Meteorol Soc 93:811–829.  https://doi.org/10.1175/bams-d-11-00052.1 CrossRefGoogle Scholar
  53. Rasmussen R, Ikeda K, Liu C et al (2014) Climate change impacts on the water balance of the Colorado headwaters: high-resolution regional climate model simulations. J Hydrometeorol 15:1091–1116.  https://doi.org/10.1175/jhm-d-13-0118.1 CrossRefGoogle Scholar
  54. Rasmussen KL, Prein AF, Rasmussen RM et al (2017) Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Clim Dyn.  https://doi.org/10.1007/s00382-017-4000-7 Google Scholar
  55. Riahi K, Rao S, Krey V et al (2011) RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57.  https://doi.org/10.1007/s10584-011-0149-y CrossRefGoogle Scholar
  56. Richard E, Buzzi A, Zängl G (2007) Quantitative precipitation forecasting in the Alps: the advances achieved by the Mesoscale Alpine Programme. Q J R Meteorol Soc 133:831–846CrossRefGoogle Scholar
  57. Scaff L, Yang D, Li Y, Mekis E (2015) Inconsistency in precipitation measurements across Alaska and Yukon border. Cryosphere 9:3709–3739.  https://doi.org/10.5194/tcd-9-3709-2015 CrossRefGoogle Scholar
  58. Schär C, Frei C, Lüthi D, Davies HC (1996) Surrogate climate-change scenarios for regional climate models. Geophys Res Lett 23:669.  https://doi.org/10.1029/96gl00265 CrossRefGoogle Scholar
  59. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475 + STR.  https://doi.org/10.5065/D68S4MVH
  60. Stone DA, Weaver AJ, Zwiers FW (2000) Trends in Canadian precipitation intensity. Atmos Ocean 38:321–347.  https://doi.org/10.1080/07055900.2000.9649651 CrossRefGoogle Scholar
  61. Sun X, Xue M, Brotzge J et al (2016) An evaluation of dynamical downscaling of Central Plains summer precipitation using a WRF-based regional climate model at a convection-permitting 4 km resolution. J Geophys Res Atmos 121:13801–13825.  https://doi.org/10.1002/2016jd024796 CrossRefGoogle Scholar
  62. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498.  https://doi.org/10.1175/bams-d-11-00094.1 CrossRefGoogle Scholar
  63. Thompson G, Eidhammer T (2014) A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J Atmos Sci 71:3636–3658.  https://doi.org/10.1175/jas-d-13-0305.1 CrossRefGoogle Scholar
  64. Trapp RJ, Hoogewind KA (2016) The realization of extreme tornadic storm events under future anthropogenic climate change. J Clim 29:5251–5265.  https://doi.org/10.1175/jcli-d-15-0623.1 CrossRefGoogle Scholar
  65. Trapp RJ, Halvorson BA, Diffenbaugh NS (2007) Telescoping, multimodel approaches to evaluate extreme convective weather under future climates. J Geophys Res Atmos 112:1–13.  https://doi.org/10.1029/2006jd008345 CrossRefGoogle Scholar
  66. Trapp RJ, Robinson ED, Baldwin ME et al (2011) Regional climate of hazardous convective weather through high-resolution dynamical downscaling. Clim Dyn 37:677–688.  https://doi.org/10.1007/s00382-010-0826-y CrossRefGoogle Scholar
  67. Warrach-Sagi K, Schwitalla T, Wulfmeyer V, Bauer HS (2013) Evaluation of a climate simulation in Europe based on the WRF-NOAH model system: precipitation in Germany. Clim Dyn 41:755–774.  https://doi.org/10.1007/s00382-013-1727-7 CrossRefGoogle Scholar
  68. Wilks DS (2011) Statistical methods in the atmospheric sciences, 3rd edn. Academic press, New YorkGoogle Scholar
  69. Wilson JW, Roberts RD (2006) Summary of convective storm initiation and evolution during IHOP: observational and modeling perspective. Mon Weather Rev 134:23–47.  https://doi.org/10.1175/mwr3069.1 CrossRefGoogle Scholar
  70. Yang D, Goodison BE, Ishida S, Benson CS (1998) Adjustment of daily precipitation data at 10 climate stations in Alaska: application of World Meteorological Organization intercomparison results. Water Resour Res 34:241–256.  https://doi.org/10.1029/97wr02681 CrossRefGoogle Scholar
  71. Zipser EJ, Cecil DJ, Liu C et al (2006) Where are the most: intense thunderstorms on Earth? Bull Am Meteorol Soc 87:1057–1071.  https://doi.org/10.1175/bams-87-8-1057 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Global Institute for Water Security at the University of SaskatchewanSaskatoonCanada
  2. 2.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations