Advertisement

Projected near-term changes in three types of heat waves over China under RCP4.5

  • Qin SuEmail author
  • Buwen Dong
Article

Abstract

The changes in three aspects of frequency, intensity and duration of the compound, daytime and nighttime heat waves (HWs) over China during extended summer (May–September) in a future period of the mid-21st century (FP; 2045–2055) under RCP4.5 scenario relative to present day (PD; 1994–2011) are investigated by two models, MetUM-GOML1 and MetUM-GOML2, which comprise the atmospheric components of two state-of-the-art climate models coupled to a multi-level mixed-layer ocean model. The results show that in the mid-21st century all three types of HWs in China will occur more frequently with strengthened intensity and elongated duration relative to the PD. The compound HWs will change most dramatically, with the frequency in the FP being 4–5 times that in the PD, and the intensity and duration doubling those in the PD. The changes in daytime and nighttime HWs are also remarkable, with the changes of nighttime HWs larger than those of daytime HWs. The future changes of the three types of HWs in China in two models are similar in terms of spatial patterns and area-averaged quantities, indicating these projected changes of HWs over the China under RCP4.5 scenario are robust. Further analyses suggest that projected future changes in HWs over China are determined mainly by the increase in seasonal mean surface air temperatures with change in temperature variability playing a minor role. The seasonal mean temperature increase is due to the increase in surface downward longwave radiation and surface shortwave radiation. The increase in downward longwave radiation results from the enhanced greenhouse effect and increased water vapour in the atmosphere. The increase in surface shortwave radiation is the result of the decreased aerosol emissions, via direct aerosol–radiation interaction and indirect aerosol–cloud interaction over southeastern and northeastern China, and the reduced cloud cover related to a decrease in relative humidity.

Keywords

Heat wave Heat wave type Future change China Coupled models 

Notes

Acknowledgements

This study is supported by the National Natural Science Foundation of China under Grants 41505037 and 41875103, by the Applied Basic Research Foundation of Yunnan Province (2016FB078), and by the UK-China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund. QS is supported by the China Scholarship Council. BD is supported by the U.K. National Centre for Atmospheric Science-Climate (NCAS-Climate) at the University of Reading. The authors like to thank three anonymous reviewers for their constructive comments on the earlier version of the paper.

Supplementary material

382_2019_4743_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1505 kb)

References

  1. Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245(4923):1227–1230.  https://doi.org/10.1126/science.245.4923.1227 CrossRefGoogle Scholar
  2. Argueso D, Di Luca A, Perkins-Kirkpatrick SE, Evans JP (2016) Seasonal mean temperature changes control future heat waves. Geophys Res Lett 43(14):7653–7660.  https://doi.org/10.1002/2016GL069408 CrossRefGoogle Scholar
  3. Arribas A, Glover M, Maidens A, Peterson K, Gordon M, MacLachlan C, Graham R, Fereday D, Camp J, Scaife A (2011) The GloSea4 ensemble prediction system for seasonal forecasting. Mon Weather Rev 139(6):1891–1910.  https://doi.org/10.1175/2010MWR3615.1 CrossRefGoogle Scholar
  4. Black E, Blackburn M, Harrison G, Hoskins B, Methven J (2004) Factors contributing to the summer 2003 European heatwave. Weather 59(8):217–223.  https://doi.org/10.1256/wea.74.04 CrossRefGoogle Scholar
  5. Boé J, Terray L (2014) Land–sea contrast, soil–atmosphere and cloud–temperature interactions: interplays and roles in future summer European climate change. Clim Dyn 42(3–4):683–699.  https://doi.org/10.1007/s00382-013-1868-8 CrossRefGoogle Scholar
  6. Chen W, Dong B (2018) Anthropogenic impacts on recent decadal change in temperature extremes over China: relative roles of greenhouse gases and anthropogenic aerosols. Clim Dyn 1:1.  https://doi.org/10.1007/s00382-018-4342-9 Google Scholar
  7. Chen Y, Li Y (2017) An inter-comparison of three heat wave types in China during 1961–2010: observed basic features and linear trends. Sci Rep 7:45619.  https://doi.org/10.1038/srep45619 CrossRefGoogle Scholar
  8. Chen RD, Lu RY (2014) Large-scale circulation anomalies associated with ‘tropical night’ weather in Beijing, China. Int J Climatol 34(6):1980–1989.  https://doi.org/10.1002/joc.3815 CrossRefGoogle Scholar
  9. Chen Y, Zhai P (2017) Revisiting summertime hot extremes in China during 1961–2015: overlooked compound extremes and significant changes. Geophys Res Lett.  https://doi.org/10.1002/2016GL072281 Google Scholar
  10. Chen Y, Chen W, Su Q, Luo F, Sparrow S, Tian F, Dong B, Tett SFB, Lott FC, Wallom D (2019) Anthropogenic warming has substantially increased the likelihood of July 2017-like heat waves over Central-Eastern China [in “Explaining Extremes of 2017 from a Climate Perspective”]. Bull Amer Meteor Soc 100(1):S91–S95.  https://doi.org/10.1175/BAMS-D-18-0087.1 CrossRefGoogle Scholar
  11. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Change 2(7):491–496.  https://doi.org/10.1038/nclimate1452 CrossRefGoogle Scholar
  12. Della-Marta PM, Luterbacher J, von Weissenfluh H, Xoplaki E, Brunet M, Wanner H (2007) Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Clim Dyn 29(2):251–275.  https://doi.org/10.1007/s00382-007-0233-1 CrossRefGoogle Scholar
  13. Dong B, Gregory JM, Sutton RT (2009) Understanding land–sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J Clim 22(11):3079–3097.  https://doi.org/10.1175/2009JCLI2652.1 CrossRefGoogle Scholar
  14. Dong B, Sutton RT, Shaffrey L, Klingaman NP (2017) Attribution of forced decadal climate change in coupled and uncoupled ocean–atmosphere model experiments. J Clim 30(16):6203–6223.  https://doi.org/10.1175/jcli-d-16-0578.1 CrossRefGoogle Scholar
  15. Freychet N, Tett S, Wang J, Hegerl G (2017) Summer heat waves over Eastern China: dynamical processes and trend attribution. Environ Res Lett 12(2):024015.  https://doi.org/10.1088/1748-9326/aa5ba3 CrossRefGoogle Scholar
  16. Freychet N, Sparrow S, Tett SFB, Mineter MJ, Hegerl GC, Wallom DCH (2018) Impacts of anthropogenic forcings and El Nino on Chinese extreme temperatures. Adv Atmos Sci 35(8):994–1002.  https://doi.org/10.1007/s00376-018-7258-8 CrossRefGoogle Scholar
  17. Gershunov A, Cayan DR, Iacobellis SF (2009) The great 2006 heat wave over California and Nevada: signal of an increasing trend. J Clim 22(23):6181–6203.  https://doi.org/10.1175/2009JCLI2465.1 CrossRefGoogle Scholar
  18. Gosling SN, Lowe JA, McGregor GR, Pelling M, Malamud BD (2009) Associations between elevated atmospheric temperature and human mortality: a critical review of the literature. Clim Change 92(3–4):299–341.  https://doi.org/10.1007/s10584-008-9441-x CrossRefGoogle Scholar
  19. Guirguis K, Gershunov A, Cayan DR, Pierce DW (2018) Heat wave probability in the changing climate of the Southwest US. Clim Dyn 50(9–10):3853–3864.  https://doi.org/10.1007/s00382-017-3850-3 CrossRefGoogle Scholar
  20. Guo X, Huang J, Luo Y, Zhao Z, Xu Y (2017) Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models. Theor Appl Climatol 128(3–4):507–522.  https://doi.org/10.1007/s00704-015-1718-1 CrossRefGoogle Scholar
  21. Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extremes 10:4–10.  https://doi.org/10.1016/j.wace.2015.08.001 CrossRefGoogle Scholar
  22. Hirons L, Klingaman N, Woolnough S (2015) MetUM-GOML: a near-globally coupled atmosphere–ocean-mixed-layer model. Geosci Model Dev 8:363–379.  https://doi.org/10.5194/gmd-8-363-2015 CrossRefGoogle Scholar
  23. Jones C et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4(3):543–570.  https://doi.org/10.5194/gmd-4-543-2011 CrossRefGoogle Scholar
  24. Karl TR, Knight RW (1997) The 1995 Chicago heat wave: how likely is a recurrence? Bull Am Meteor Soc 78(6):1107–1120.  https://doi.org/10.1175/1520-0477(1997)078%3c1107:tchwhl%3e2.0.co;2 CrossRefGoogle Scholar
  25. Lamarque J-F, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10(15):7017–7039.  https://doi.org/10.5194/acp-10-7017-2010 CrossRefGoogle Scholar
  26. Lamarque J-F, Kyle GP, Meinshausen M, Riahi K, Smith SJ, van Vuuren DP, Conley AJ, Vitt F (2011) Global and regional evolution of short-lived radiatively-active gases and aerosols in the representative concentration pathways. Clim Change 109:191.  https://doi.org/10.1007/s10584-011-0155-0 CrossRefGoogle Scholar
  27. Lau WKM, Kim KM (2017) Competing influences of greenhouse warming and aerosols on Asian summer monsoon circulation and rainfall. Asia-Pac J Atmos Sci 53(2):181–194.  https://doi.org/10.1007/s13143-017-0033-4 CrossRefGoogle Scholar
  28. Lau N-C, Nath MJ (2014) Model simulation and projection of European heat waves in present-day and future climates. J Clim 27(10):3713–3730.  https://doi.org/10.1175/jcli-d-13-00284.1 CrossRefGoogle Scholar
  29. Lau WKM, Kim KM, Leung LR (2017) Changing circulation structure and precipitation characteristics in Asian monsoon regions: greenhouse warming vs. aerosol effects. Geosci Lett 4(1):28.  https://doi.org/10.1186/s40562-017-0094-3 CrossRefGoogle Scholar
  30. Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529(7584):84.  https://doi.org/10.1038/nature16467 CrossRefGoogle Scholar
  31. Li Z, Cao LJ, Zhu YN, Yan ZW (2016) Comparison of two homogenized datasets of daily maximum/mean/minimum temperature in China during 1960–2013. J Meteor Res 30(1):53–66.  https://doi.org/10.1007/s13351-016-5054-x CrossRefGoogle Scholar
  32. Li Y, Ding Y, Li W (2017) Observed trends in various aspects of compound heat waves across China from 1961 to 2015. J Meteor Res 31(3):455–467.  https://doi.org/10.1007/s13351-017-6150-2 CrossRefGoogle Scholar
  33. Luo M, Lau N-C (2017) Heat waves in southern China: synoptic behavior, long-term change, and urbanization effects. J Clim 30(2):703–720.  https://doi.org/10.1175/jcli-d-16-0269.1 CrossRefGoogle Scholar
  34. Luo M, Lau N-C (2018) Synoptic characteristics, atmospheric controls, and long-term changes of heat waves over the Indochina Peninsula. Clim Dyn 51(7–8):2707–2723.  https://doi.org/10.1007/s00382-017-4038-6 CrossRefGoogle Scholar
  35. Luo F, Dong B, Tian F, Li S (2018) Anthropogenically forced decadal change of South Asian summer monsoon across the mid-1990s. J Geophys Res Atmos 124(2):806–824.  https://doi.org/10.1029/2018jd029195 CrossRefGoogle Scholar
  36. Ma SM, Zhou TJ, Stone DA, Angelil O, Shiogama H (2017) Attribution of the July–August 2013 heat event in Central and Eastern China to anthropogenic greenhouse gas emissions. Environ Res Lett.  https://doi.org/10.1088/1748-9326/aa69d2 Google Scholar
  37. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st Century. Science 305(5686):994–997.  https://doi.org/10.1126/science.1098704 CrossRefGoogle Scholar
  38. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Vuuren DP, Van TR, Carter E, Seita K Mikiko, Tom K (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756.  https://doi.org/10.1038/nature08823 CrossRefGoogle Scholar
  39. Perkins SE (2015) A review on the scientific understanding of heatwaves—their measurement, driving mechanisms, and changes at the global scale. Atmos Res 164–165:242–267.  https://doi.org/10.1016/j.atmosres.2015.05.014 CrossRefGoogle Scholar
  40. Perkins SE, Alexander LV (2013) On the measurement of heat waves. J Clim 26(13):4500–4517.  https://doi.org/10.1175/jcli-d-12-00383.1 CrossRefGoogle Scholar
  41. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century. J Geophys Res.  https://doi.org/10.1029/2002JD002670 Google Scholar
  42. Robine JM, Cheung SLK, Le Roy S, Van Oyen H, Griffiths C, Michel JP, Herrmann FR (2008) Death toll exceeded 70,000 in Europe during the summer of 2003. C R Biol 331(2):171–178.  https://doi.org/10.1016/j.crvi.2007.12.001 CrossRefGoogle Scholar
  43. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427(6972):332–336.  https://doi.org/10.1038/nature02300 CrossRefGoogle Scholar
  44. Schoetter R, Cattiaux J, Douville H (2015) Changes of western European heat wave characteristics projected by the CMIP5 ensemble. Clim Dyn 45(5–6):1601–1616.  https://doi.org/10.1007/s00382-014-2434-8 CrossRefGoogle Scholar
  45. Seneviratne SI, Donat MG, Mueller B, Alexander LV (2014) No pause in the increase of hot temperature extremes. Nat Clim Change 4(3):161.  https://doi.org/10.1038/nclimate2145 CrossRefGoogle Scholar
  46. Smith DM, Murphy JM (2007) An objective ocean temperature and salinity analysis using covariances from a global climate model. J Geophys Res Oceans.  https://doi.org/10.1029/2005JC003172 Google Scholar
  47. Sparrow S, Su Q, Tian FX, Li SH, Chen Y, Chen W, Luo FF, Freychet N, Lott FC, Dong BW, Tett SFB, Wallom D (2018) Attributing human influence on the July 2017 Chinese heatwave: the influence of sea-surface temperatures. Environ Res Lett.  https://doi.org/10.1088/1748-9326/ade356 Google Scholar
  48. Stefanon M, Fabio DA, Philippe D (2012) Heatwave classification over Europe and the Mediterranean region. Environ Res Lett 7(1):014023.  https://doi.org/10.1088/1748-9326/7/1/014023 CrossRefGoogle Scholar
  49. Su Q, Dong B (2019) Recent decadal changes in heat waves over China: drivers and mechanisms. J ClimGoogle Scholar
  50. Sun Y, Zhang XB, Zwiers FW, Song LC, Wan H, Hu T, Yin H, Ren GY (2014) Rapid increase in the risk to extreme summer heat in Eastern China. Nat Clim Change 4(12):1082–1085.  https://doi.org/10.1038/nclimate2410 CrossRefGoogle Scholar
  51. Sun Y, Song L, Yin H, Zhou B, Hu T, Zhang X, Stott P (2016) Human influence on the 2015 extreme high temperature events in Western China [in “Explaining Extremes of 2015 from a Climate Perspective”]. Bull Am Meteor Soc 97(12):S102–S106.  https://doi.org/10.1175/bams-d-16-0158.1 CrossRefGoogle Scholar
  52. Tan J, Zheng Y, Song G, Kalkstein LS, Kalkstein AJ, Tang X (2007) Heat wave impacts on mortality in Shanghai, 1998 and 2003. Int J Biometeorol 51(3):193–200.  https://doi.org/10.1007/s00484-006-0058-3 CrossRefGoogle Scholar
  53. Tian F, Dong B, Robson J, Sutton R (2018) Forced decadal changes in the East Asian summer monsoon: the roles of greenhouse gases and anthropogenic aerosols. Clim Dyn 1:1–17.  https://doi.org/10.1007/s00382-018-4105-7 Google Scholar
  54. Twomey S (1977) Influence of pollution on shortwave albedo of clouds. J Atmos Sci 34(7):1149–1152.  https://doi.org/10.1175/1520-0469(1977)034%3c1149:tiopot%3e2.0.co;2 CrossRefGoogle Scholar
  55. Walters D, Best M, Best M, Bushell A, Copsey D, Copsey D, Edwards J, Falloon P, Harris C, Lock A, Manners J, Morcrette C (2011) The Met Office Unified Model global atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations. Geosci Model Dev 4(4):919.  https://doi.org/10.5194/gmd-4-919-2011 CrossRefGoogle Scholar
  56. Walters D, Wood N, Vosper S, Milton S (2014) ENDGame: a new dynamical core for seamless atmospheric prediction. Met Office documentation. http://www.metoffice.gov.uk/media/pdf/s/h/ENDGameGOVSciv2.0.pdf
  57. Walters D, Brooks M, Boutle I, Melvin T, Stratton R, Vosper S, Wells H, Williams K, Wood N, Allen T (2017) The Met Office unified model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geosci Model Dev 10(4):1487–1520.  https://doi.org/10.5194/gmd-10-1487-2017 CrossRefGoogle Scholar
  58. Wang W, Zhou W, Wang X, Fong SK, Leong KC (2013) Summer high temperature extremes in Southeast China associated with the East Asian jet stream and circumglobal teleconnection. J Geophys Res Atmos 118(15):8306–8319.  https://doi.org/10.1002/jgrd.50633 CrossRefGoogle Scholar
  59. Wang C, Zhang L, Lee S-K, Wu L, Mechoso CR (2014) A global perspective on CMIP5 climate model biases. Nat Clim Change 4:201–205.  https://doi.org/10.1038/nclimate2118 CrossRefGoogle Scholar
  60. Wang W, Zhou W, Li X, Wang X, Wang D (2016) Synoptic-scale characteristics and atmospheric controls of summer heat waves in China. Clim Dyn 46(9):2923–2941.  https://doi.org/10.1007/s00382-015-2741-8 CrossRefGoogle Scholar
  61. Wang P, Tang J, Sun X, Wang S, Wu J, Dong X, Fang J (2017) Heatwaves in China: definitions, leading patterns and connections to large-scale atmospheric circulation and SSTs. J Geophys Res Atmos.  https://doi.org/10.1002/2017JD027180 Google Scholar
  62. Wilbanks TJ, Fernandez S (2014) Climate change and infrastructure, urban systems, and vulnerabilities: technical report for the US department of energy in support of the national climate assessment. Island Press, WashingtonCrossRefGoogle Scholar
  63. Wilcox LJ, Dong B, Sutton RT, Highwood EJ (2015) The 2014 hot, dry summer in Northeast Asia [in “Explaining Extremes of 2014 from a Climate Perspective”]. Bull Am Meteor Soc 96(12):S105–S110.  https://doi.org/10.1175/bams-d-15-00123.1 CrossRefGoogle Scholar
  64. Xu Y, Ramanathan V, Victor DG (2018) Global warming will happen faster than we think. Nature 564:30–32.  https://doi.org/10.1038/d41586-018-07586-5 CrossRefGoogle Scholar
  65. You QL, Jiang ZH, Kong L, Wu ZW, Bao YT, Kang SC, Pepin N (2017) A comparison of heat wave climatologies and trends in China based on multiple definitions. Clim Dyn 48(11):3975–3989.  https://doi.org/10.1007/s00382-016-3315-0 CrossRefGoogle Scholar
  66. Yu R, Zhai PM, Lu YY (2018) Implications of differential effects between 1.5 and 2 °C global warming on temperature and precipitation extremes in China’s urban agglomerations. Int J Climatol 38(5):2374–2385.  https://doi.org/10.1002/joc.5340 CrossRefGoogle Scholar
  67. Zhou B, Wen QH, Xu Y, Song L, Zhang X (2014a) Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J Clim 27(17):6591–6611.  https://doi.org/10.1175/jcli-d-13-00761.1 CrossRefGoogle Scholar
  68. Zhou TJ, Ma SM, Zou LW (2014b) Understanding a hot summer in Central Eastern China: summer 2013 in context of multimodel trend analysis [in “Explaining Extremes of 2013 from a Climate Perspective”]. Bull Am Meteor Soc 95(9):S54–S57Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Atmospheric SciencesYunnan UniversityKunmingChina
  2. 2.Department of Meteorology, National Centre for Atmospheric Science-ClimateUniversity of ReadingReadingUK

Personalised recommendations