Advertisement

Climate Dynamics

, Volume 53, Issue 3–4, pp 1613–1636 | Cite as

Improving probabilistic hydroclimatic projections through high-resolution convection-permitting climate modeling and Markov chain Monte Carlo simulations

  • S. WangEmail author
  • Y. Wang
Article

Abstract

Understanding future changes in hydroclimatic variables plays a crucial role in improving resilience and adaptation to extreme weather events such as floods and droughts. In this study, we develop high-resolution climate projections over Texas by using the convection-permitting Weather Research and Forecasting (WRF) model with 4 km horizontal grid spacing, and then produce the Markov chain Monte Carlo (MCMC)-based hydrologic forecasts in the Guadalupe River basin which is the primary concern of the Texas Water Development Board and the Guadalupe-Blanco River Authority. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) dataset is used to verify the WRF climate simulations. The Model Parameter Estimation Experiment (MOPEX) dataset is used to validate probabilistic hydrologic predictions. Projected changes in precipitation, potential evapotranspiration (PET) and streamflow at different temporal scales are examined by dynamically downscaling climate projections derived from 15 Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCMs). Our findings reveal that the Upper Coast Climate Division of Texas is projected to experience the most remarkable wetting caused by precipitation and PET changes, whereas the most significant drying is expected to occur for the North Central Texas Climate Division. The dry Guadalupe River basin is projected to become drier with a substantial increase in future drought risks, especially for the summer season. And the extreme precipitation events are projected to increase in frequency and intensity with a reduction in overall precipitation frequency, which may result in more frequent occurrences of flash floods and drought episodes in the Guadalupe River basin.

Keywords

Convection permitting High-resolution climate projection Hydroclimatic changes Markov chain Monte Carlo Pseudo global warming 

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 51809223) and the Hong Kong Polytechnic University Start-up Grant (Grant No. 1-ZE8S). The author Y. Wang was funded by the Texas Tech Research Assistant Professorship Initiative. The authors would like to express their sincere gratitude to the editor and three anonymous reviewers for their constructive comments and suggestions.

Supplementary material

382_2019_4702_MOESM1_ESM.docx (668 kb)
Supplementary material 1 (DOCX 668 KB)

References

  1. Abera W, Formetta G, Brocca L, Rigon R (2017) Modeling the water budget of the Upper Blue Nile basin using the JGrass-NewAge model system and satellite data. Hydrol Earth Syst Sci 21:3145–3165.  https://doi.org/10.5194/hess-21-3145-2017 CrossRefGoogle Scholar
  2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements, Irrigation and Drainage Paper No. 56. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  3. Amin MZM, Shaaban AJ, Ohara N, Kavvas ML, Chen ZQ, Kure S, Jang S (2016) Climate change assessment of water resources in Sabah and Sarawak, Malaysia, based on dynamically-downscaled GCM projections using a regional hydroclimate model. J Hydrol Eng 21:05015015.  https://doi.org/10.1061/(ASCE)HE.1943-5584.0001242 CrossRefGoogle Scholar
  4. Andrieu C, Thoms J (2008) A tutorial on adaptive MCMC. Stat Comput 18:343–373.  https://doi.org/10.1007/s11222-008-9110-y CrossRefGoogle Scholar
  5. Ashfaq M, Rastogi D, Mei R, Kao SC, Gangrade S, Naz BS, Touma D (2016) High-resolution ensemble projections of near-term regional climate over the continental United States. J Geophys Res Atmos 121:9943–9963.  https://doi.org/10.1002/2016JD025285 CrossRefGoogle Scholar
  6. Bennett JC, Wang QJ, Li M, Robertson DE, Schepen A (2016) Reliable long-range ensemble streamflow forecasts: combining calibrated climate forecasts with a conceptual runoff model and a staged error model. Water Resour Res 52:8238–8259.  https://doi.org/10.1002/2016WR019193 CrossRefGoogle Scholar
  7. Boulard D, Castel T, Camberlin P, Sergent AS, Bréda N, Badeau V, Rossi A, Pohl B (2016) Capability of a regional climate model to simulate climate variables requested for water balance computation: a case study over northeastern France. Clim Dyn 46:2689–2716.  https://doi.org/10.1007/s00382-015-2724-9 CrossRefGoogle Scholar
  8. Brisson E, Weverberg KV, Demuzere M, Devis A, Saeed S, Stengel M, van Lipzig NPM (2016) How well can a convection–permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics? Clim Dyn 47:3043–3061.  https://doi.org/10.1007/s00382-016-3012-z CrossRefGoogle Scholar
  9. Bulygina N, Gupta H (2011) Correcting the mathematical structure of a hydrological model via Bayesian data assimilation. Water Resour Res 47:W05514.  https://doi.org/10.1029/2010WR009614 Google Scholar
  10. Carvalho KS, Wang S (2019) Characterizing the Indian Ocean sea level changes and potential coastal flooding impacts under global warming. J Hydrol 569:373–386.  https://doi.org/10.1016/j.jhydrol.2018.11.072 CrossRefGoogle Scholar
  11. Chan SC, Kendon EJ, Roberts N, Blenkinsop S, Fowler HJ (2018) Large-scale predictors for extreme hourly precipitation events in convection-permitting climate simulations. J Clim 31:2115–2131.  https://doi.org/10.1175/JCLI-D-17-0404.1 CrossRefGoogle Scholar
  12. Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH, Curtis J, Pasteris PP (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Clim 28:2031–2064.  https://doi.org/10.1002/joc.1688 CrossRefGoogle Scholar
  13. DeChant CM, Moradkhani H (2015) On the assessment of reliability in probabilistic hydrometeorological event forecasting. Water Resour Res 51:3867–3883.  https://doi.org/10.1002/2014WR016617 CrossRefGoogle Scholar
  14. Duan Q et al (2006) Model Parameter Estimation Experiment (MOPEX): an overview of science strategy and major results from the second and third workshops. J Hydrol 320:3–17.  https://doi.org/10.1016/j.jhydrol.2005.07.031 CrossRefGoogle Scholar
  15. Erler AR, Peltier WR (2017) Projected hydroclimatic changes in two major river basins at the Canadian west coast based on high-resolution regional climate simulations. J Clim 30:8081–8105.  https://doi.org/10.1175/JCLI-D-16-0870.1 CrossRefGoogle Scholar
  16. Erler AR, Peltier WR, D’Orgeville M (2015) Dynamically downscaled high-resolution hydroclimate projections for western Canada. J Clim 28:423–450.  https://doi.org/10.1175/JCLI-D-14-00174.1 CrossRefGoogle Scholar
  17. Farmer WH, Vogel RM (2016) On the deterministic and stochastic use of hydrologic models. Water Resour Res 52:5619–5633.  https://doi.org/10.1002/2016WR019129 CrossRefGoogle Scholar
  18. Fosser G, Khodayar S, Berg P (2015) Benefit of convection permitting climate model simulations in the representation of convective precipitation. Clim Dyn 44:45–60.  https://doi.org/10.1007/s00382-014-2242-1 CrossRefGoogle Scholar
  19. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472.  https://doi.org/10.1214/ss/1177011136 CrossRefGoogle Scholar
  20. Giorgi F et al (2014) Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections. Clim Change 125:39–51.  https://doi.org/10.1007/s10584-014-1117-0 CrossRefGoogle Scholar
  21. Griffiths J, Zeitler J, Sedlar L, Bjornson D, Bjornson B (1990) A Decade of Texas Weather (1980–1989). In: Rep, 88 pp, Off of the State Climatol, Dep of Meteorol. Coll of Geosci, Texas A&M Univ, College Station, TXGoogle Scholar
  22. Hagemann S, Chen C, Haerter JO (2011) Impact of a statistical bias correction on the projected hydrological changes obtained from three gcms and two hydrology models. J Hydrometeorol 12:556–578.  https://doi.org/10.1175/2011JHM1336.1 CrossRefGoogle Scholar
  23. Herman JD, Reed PM, Wagener T (2013) Time-varying sensitivity analysis clarifies the effects of watershed model formulation on model behavior. Water Resour Res 49:1400–1414.  https://doi.org/10.1002/wrcr.20124 CrossRefGoogle Scholar
  24. Hong SY, Pan HL (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Weather Rev 124:2322–2339.  https://doi.org/10.1175/1520-0493(1996)124%3C2322:NBLVDI%3E2.0.CO;2 CrossRefGoogle Scholar
  25. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res Atmos 113:D13103.  https://doi.org/10.1029/2008JD009944 CrossRefGoogle Scholar
  26. Im ES, Choi YW, Ahn JB (2017) Robust intensification of hydroclimatic intensity over East Asia from multi-model ensemble regional projections. Theor Appl Climatol 129:1241–1254.  https://doi.org/10.1007/s00704-016-1846-2 CrossRefGoogle Scholar
  27. Jimenez PA, Dudhia J, Gonzalez-Rouco JF, Navarro J, Montavez JP, Garcia-Bustamante E (2012) A revised scheme for the WRF surface layer formulation. Mon Weather Rev 140:898–918.  https://doi.org/10.1175/MWR-D-11-00056.1 CrossRefGoogle Scholar
  28. Kendon EJ, Roberts NM, Senior CA, Roberts MJ (2012) Realism of rainfall in a very high-resolution regional climate model. J Clim 25:5791–5806.  https://doi.org/10.1175/JCLI-D-11-00562.1 CrossRefGoogle Scholar
  29. Kendon EJ et al (2017) Do convection-permitting regional climate models improve projections of future precipitation change? B Am Meteorol Soc 79–93.  https://doi.org/10.1175/BAMS-D-15-0004.1
  30. Krysanova V et al (2017) Intercomparison of regional-scale hydrological models and climate change impacts projected for 12 large river basins worldwide—a synthesis. Environ Res Lett 12:105002.  https://doi.org/10.1088/1748-9326/aa8359 CrossRefGoogle Scholar
  31. Leong DNS, Donner SD (2015) Climate change impacts on streamflow availability for the Athabasca Oil Sands. Clim Change 133:651–663.  https://doi.org/10.1007/s10584-015-1479-y CrossRefGoogle Scholar
  32. Leutwyler D, Lüthi D, Ban N, Fuhrer O, Schär C (2017) Evaluation of the convection-resolving climate modeling approach on continental scales. J Geophys Res Atmos 122:5237–5258.  https://doi.org/10.1002/2016JD026013 CrossRefGoogle Scholar
  33. Li Z, Huang GH, Wang X, Han J, Fan YR (2016) Impacts of future climate change on river discharge based on hydrological inference: a case study of the Grand River Watershed in Ontario, Canada. Sci Total Environ 548–549:198–210.  https://doi.org/10.1016/j.scitotenv.2016.01.002 CrossRefGoogle Scholar
  34. Liu C, Ikeda K, Thompson G, Rasmussen R, Dudhia J (2011) High-resolution simulations of wintertime precipitation in the Colorado Headwaters region: sensitivity to physics parameterizations. Mon Weather Rev 139:3533–3553.  https://doi.org/10.1175/MWR-D-11-00009.1 CrossRefGoogle Scholar
  35. Liu C et al (2017) Continental-scale convection-permitting modeling of the current and future climate of North America. Clim Dyn 49:71–95.  https://doi.org/10.1007/s00382-016-3327-9 CrossRefGoogle Scholar
  36. Lu D, Ricciuto D, Walker A, Safta C, Munger W (2017) Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods. Biogeosciences 14:4295–4314.  https://doi.org/10.5194/bg-14-4295-2017 CrossRefGoogle Scholar
  37. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092.  https://doi.org/10.1063/1.1699114 CrossRefGoogle Scholar
  38. Moore RJ (1985) The probability-distributed principle and runoff production at point and basin scales. Hydrol Sci J 30:273–297.  https://doi.org/10.1080/02626668509490989 CrossRefGoogle Scholar
  39. Music B, Frigon A, Lofgren B, Turcotte R, Cyr JF (2015) Present and future Laurentian Great Lakes hydroclimatic conditions as simulated by regional climate models with an emphasis on Lake Michigan-Huron. Clim Change 130:603–618.  https://doi.org/10.1007/s10584-015-1348-8 CrossRefGoogle Scholar
  40. Niu GY et al (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res Atmos 116:D12109.  https://doi.org/10.1029/2010JD015139 CrossRefGoogle Scholar
  41. Pechlivanidis IG et al (2017) Analysis of hydrological extremes at different hydro-climatic regimes under present and future conditions. Clim Change 141:467–481.  https://doi.org/10.1007/s10584-016-1723-0 CrossRefGoogle Scholar
  42. Pfahl S, O’Gorman PA, Fischer EM (2017) Understanding the regional pattern of projected future changes in extreme precipitation. Nat Clim Change 7:423–427.  https://doi.org/10.1038/nclimate3287 CrossRefGoogle Scholar
  43. Piao S et al (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43–51.  https://doi.org/10.1038/nature09364 CrossRefGoogle Scholar
  44. Prein AF et al (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys 53:323–361.  https://doi.org/10.1002/2014RG000475 CrossRefGoogle Scholar
  45. Prein AF, Rasmussen RM, Ikeda K, Liu C, Clark MP, Holland GJ (2017) The future intensification of hourly precipitation extremes. Nat Clim Change 7:48–52.  https://doi.org/10.1038/nclimate3168 CrossRefGoogle Scholar
  46. Rajbhandari R, Shrestha AB, Kulkarni A, Patwardhan SK, Bajracharya SR (2015) Projected changes in climate over the Indus river basin using a high resolution regional climate model (PRECIS). Clim Dyn 44:339–357.  https://doi.org/10.1007/s00382-014-2183-8 CrossRefGoogle Scholar
  47. Ramos MH, van Andel SJ, Pappenberger F (2013) Do probabilistic forecasts lead to better decisions? Hydrol Earth Syst Sci 17:2219–2232.  https://doi.org/10.5194/hess-17-2219-2013 CrossRefGoogle Scholar
  48. Rasmussen R, Ikeda K, Liu C, Gochis D, Clark D (2014) Climate change impacts on the water balance of the Colorado Headwaters: high-resolution regional climate model simulations. J Hydrometeorol 15:1091–1116.  https://doi.org/10.1175/JHM-D-13-0118.1 CrossRefGoogle Scholar
  49. Razavi S, Gupta HV (2016) A new framework for comprehensive, robust, and efficient global sensitivity analysis: 2. Application. Water Resour Res 52:440–455.  https://doi.org/10.1002/2015WR017559 CrossRefGoogle Scholar
  50. Roy T, Serrat-Capdevila A, Gupta H, Valdes J (2016) A platform for probabilistic multimodel and multiproduct streamflow forecasting. Water Resour Res 53:376–399.  https://doi.org/10.1002/2016WR019752 CrossRefGoogle Scholar
  51. Roy T, Gupta HV, Serrat-Capdevila A, Valdes JB (2017) Using satellite-based evapotranspiration estimates to improve the structure of a simple conceptual rainfall–runoff model. Hydrol Earth Syst Sci 21:879–896.  https://doi.org/10.5194/hess-21-879-2017 CrossRefGoogle Scholar
  52. Sadegh M, Vrugt JA (2013) Bridging the gap between GLUE and formal statistical approaches: approximate Bayesian computation. Hydrol Earth Syst Sci 17:4831–4850.  https://doi.org/10.5194/hess-17-4831-2013 CrossRefGoogle Scholar
  53. Sadegh M, Vrugt JA, Xu C, Volpi E (2015) The stationarity paradigm revisited: hypothesis testing using diagnostics, summary metrics, and DREAM(ABC). Water Resour Res 51:9207–9231.  https://doi.org/10.1002/2014WR016805 CrossRefGoogle Scholar
  54. Sadegh M, Ragno E, AghaKouchak A (2017) Multivariate Copula Analysis Toolbox (MvCAT): describing dependence and underlying uncertainty using a Bayesian framework. Water Resour Res 53:5166–5183.  https://doi.org/10.1002/2016WR020242 CrossRefGoogle Scholar
  55. Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057.  https://doi.org/10.1175/2010BAMS3001.1 CrossRefGoogle Scholar
  56. Silverman NL, Maneta MP, Chen SH, Harper JT (2013) Dynamically downscaled winter precipitation over complex terrain of the Central Rockies of western Montana, USA. Water Resour Res 49:458–470.  https://doi.org/10.1029/2012WR012874 CrossRefGoogle Scholar
  57. Sorooshian S, Dracup JA (1980) Stochastic parameter estimation procedures for hydrologie rainfall-runoff models: correlated and heteroscedastic error cases. Water Resour Res 16:430–442.  https://doi.org/10.1029/WR016i002p00430 CrossRefGoogle Scholar
  58. Srivastava PK, Han D, Islam T, Petropoulos GP, Gupta M, Dai Q (2016) Seasonal evaluation of evapotranspiration fluxes from MODIS satellite and mesoscale model downscaled global reanalysis datasets. Theor Appl Climatol 124:461–473.  https://doi.org/10.1007/s00704-015-1430-1 CrossRefGoogle Scholar
  59. Svensson C et al (2015) Long-range forecasts of UK winter hydrology. Environ Res Lett 10:064006.  https://doi.org/10.1088/1748-9326/10/6/064006 CrossRefGoogle Scholar
  60. Thompson G, Field PR, Rasmussen RM, Hall WD (2008) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon Weather Rev 136:5095–5115.  https://doi.org/10.1175/2008MWR2387.1 CrossRefGoogle Scholar
  61. Vrugt JA (2016) Markov chain Monte Carlo simulation using the DREAM software package: theory, concepts, and MATLAB implementation. Environ Modell Softw 75:273–316.  https://doi.org/10.1016/j.envsoft.2015.08.013 CrossRefGoogle Scholar
  62. Vrugt JA, ter Braak CJF, Clark MP, Hyman JM, Robinson BA (2008) Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour Res 44:W00B09.  https://doi.org/10.1029/2007WR006720 CrossRefGoogle Scholar
  63. Vrugt JA, ter Braak CJF, Diks CGH, Robinson BA, Hyman JM, Higdon D (2009) Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int J Nonlinear Sci Numer Simul 10:273–290.  https://doi.org/10.1515/IJNSNS.2009.10.3.273 CrossRefGoogle Scholar
  64. Wang S, Huang GH, Lin QG, Li Z, Zhang H, Fan YR (2014) Comparison of interpolation methods for estimating spatial distribution of precipitation in Ontario, Canada. Int J Climatol 34:3745–3751.  https://doi.org/10.1002/joc.3941 CrossRefGoogle Scholar
  65. Wang S, Huang GH, Baetz BW, Huang W (2015) A polynomial chaos ensemble hydrologic prediction system for efficient parameter inference and robust uncertainty assessment. J Hydrol 530:716–733.  https://doi.org/10.1016/j.jhydrol.2015.10.021 CrossRefGoogle Scholar
  66. Wang S, Ancell BC, Huang GH, Baetz BW (2018a) Improving robustness of hydrologic ensemble predictions through probabilistic pre- and post-processing in sequential data assimilation. Water Resour Res 54:2129–2151.  https://doi.org/10.1002/2018WR022546 CrossRefGoogle Scholar
  67. Wang Y, Geerts B, Liu C (2018b) A 30-year convection-permitting regional climate simulation over the interior western United States. Part I: Validation. Int J Climatol 1–21.  https://doi.org/10.1002/joc.5527
  68. Westra S et al (2014) Future changes to the intensity and frequency of short-duration extreme rainfall. Rev Geophys 52:522–555.  https://doi.org/10.1002/2014RG000464 CrossRefGoogle Scholar
  69. Yang ZL et al (2011) The community Noah land surface model with multiparameterization options (Noah–MP): 2. Evaluation over global river basins. J Geophys Res Atmos 116:D1211.  https://doi.org/10.1029/2010JD015140 Google Scholar
  70. Yuan X, Wood EF, Roundy JK, Pan M (2013) CFSv2-based seasonal hydroclimatic forecasts over the conterminous United States. J Clim 26:4828–4847.  https://doi.org/10.1175/JCLI-D-12-00683 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Land Surveying and Geo-InformaticsThe Hong Kong Polytechnic UniversityHong KongChina
  2. 2.Department of GeosciencesTexas Tech UniversityLubbockUSA

Personalised recommendations