Advertisement

Climate Dynamics

, Volume 53, Issue 5–6, pp 3257–3270 | Cite as

Fram Strait sea ice export affected by thinning: comparing high-resolution simulations and observations

  • Behnam ZamaniEmail author
  • Thomas Krumpen
  • Lars H. Smedsrud
  • Rüdiger Gerdes
Article

Abstract

Variability and trends of Fram Strait sea ice area and volume exports are examined for the period of 1990–2010. Simulations from a high-resolution version of the MPIOM model (STORM project) reproduce area and volume export well when compared with NSIDC and ICESat satellite data and in-situ ice thickness observations. The fluxes derived from ice thickness and drift satellite products vary considerably, indicating a high uncertainty in these estimates which we mostly assign to the drift observations. The model captures the observed average seasonal cycles and interannual variability of ice export. The simulated mean annual sea ice area export is 860 × 103 km2 a− 1 (1990–2010), and the correlation with the NSIDC-based area fluxes is r = 0.67. The simulated mean annual volume export is 3.3 × 103 km3 a− 1 (1990–2010), close to the ICESat/ULS values, with a correlation of r = 0.58. The simulated monthly area export has a significant positive trend of + 10% per decade, explained by wind forcing. The major contribution to the robust trend in area export between June and September. Fram Strait ice volume export variability is mainly controlled by ice drift with a dominant role of the Transpolar Drift and, to a lesser extent thickness variability. The area export increase reflects increasing ice-drift speed, but is balanced with a reduced thickness over time when it comes to volume export, giving no significant trend in volume export. The spatial variability of ice drift indicates that the export influences a large area upstream in the Trans-Polar Drift stream, and that high volume export events lead to a thinner thickness there. The central Arctic is well connected drift-wise to the Fram Strait via the Transpolar Drift while for thickness, the region north of Greenland is dominated and controlled by the Fram Strait ice export.

Keywords

Ocean-sea ice model Fram Strait Sea ice area export Sea ice volume export Sea ice export trends High-resolution model Arctic sea ice mass balance 

Notes

Acknowledgements

We acknowledge the STORM consortium for ensuring the computational resources, and acknowledge AWI, CliSAP, MPI, HGZ for their financial support. We also acknowledge German Climate Computing Center (DKRZ) for their technical support, particularly regarding the code optimization. Through the provision observational data, our study was supported by the CORESAT project funded by the Norwegian Research Council (No. 222681). The AMSR-E and SSM/I data were provided by NSIDC (Boulder, USA). Lars H. Smedsrud was supported by the ice2ice project (ERC grant 610055) from the European Community’s Seventh Framework Programme (FP7/2007–2013). We thank Ron Kwok (Jet Propulsion Laboratory, USA), Gunnar Spreen (University of Bremen, Germany), for providing us the satellite data and Edmond Hansen (Norwegian Polar Institute, Norway) for giving us access to the ULS data. We also thank the two anonymous reviewers who provided helpful and constructive comments and suggestions to improve our manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aagaard K, Greisman P (1975) Toward new mass and heat budgets for the Arctic Ocean. J Geophys Res 80(27):3821–3827.  https://doi.org/10.1029/JC080i027p03821 CrossRefGoogle Scholar
  2. Aksenov Y, Bacon S, Coward AC, Nurser G (2010) The North Atlantic inflow to the Arctic Ocean: high-resolution model study. J Mar Syst 79(1):1–22.  https://doi.org/10.1016/j.jmarsys.2009.05.003 CrossRefGoogle Scholar
  3. Arakawa A, Lamb VR (1977) Computational design of the basic dynamical process of the UCLA general circulation model. Methods Comput Phys 17:173–265.  https://doi.org/10.1016/B978-0-12-460817-7.50009-4 CrossRefGoogle Scholar
  4. Beszczynska-Moeller A, Fahrbach E, Schauer U, Hansen E (2012) Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. J Mar Sci 69:852–863.  https://doi.org/10.1093/icesjms/fss056 CrossRefGoogle Scholar
  5. Comiso JC (2010) Variability and trends of the global sea ice cover. In: Thomas DN, Diekmann GS (eds) Sea ice, 2nd edn. Blackwell publishing, UK, pp 205–246Google Scholar
  6. EUMETSAT OSISAF (2010) Global sea ice concentration reprocessing dataset 1978–2007 (v1). Availabsssssle at: http://osisaf.met.no
  7. Fieg K, Gerdes R, Fahrbach E, Beszczynska-Möller A, Schauer U (2010) Simulation of oceanic volume transports through Fram Strait 1995–2005. Ocean Dyn 60:491.  https://doi.org/10.1007/s10236-010-0263-9 CrossRefGoogle Scholar
  8. Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20:150–160.  https://doi.org/10.1175/1520-0485(1990)020%3C0150:IMIOCM%3E2.0.CO;2.CrossRefGoogle Scholar
  9. Haas C (2004) Late-summer sea ice thickness variability in the Arctic Transpolar Drift 1991–2001 derived from ground-based electromagnetic sounding. Geophys Res Lett 31:L09402.  https://doi.org/10.1029/2003GL019394 CrossRefGoogle Scholar
  10. Haas C, Pfaffling A, Hendricks S, Rabenstein L, Etienne JL, Rigor I (2008) Reduced ice thickness in Arctic transpolar drift favors rapid ice retreat. Geophys Res Lett 35:L17501.  https://doi.org/10.1029/2008GL034457 CrossRefGoogle Scholar
  11. Haas C, Hendricks S, Eicken H, Herber A (2010) Synoptic airborne thickness surveys reveal state of Arctic sea ice cover. Geophys Res Lett 37:L09501.  https://doi.org/10.1029/2010GL042652 CrossRefGoogle Scholar
  12. Hansen E, Gerland S, Granskog MA, Pavlova O, Renner AHH, Haapala J, Løyning TB, Tschudi M, (2013) Thinning of Arctic sea ice observed in Fram Strait: 1990–2011. J Geophys Res Oceans 118(10):5202–5221CrossRefGoogle Scholar
  13. Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846CrossRefGoogle Scholar
  14. Hilmer R, Harder M, Lemke P (1998) Sea ice transport: a highly variable link between Arctic and North Atlantic. Geophys Res Lett 25:3359–3362.  https://doi.org/10.1029/98GL52360 CrossRefGoogle Scholar
  15. Holloway G, Nguyen A, Wang Z (2011) Oceans and ocean models as seen by current meters. J Geophys Res 116:C00D08.  https://doi.org/10.1029/2011JC007044 CrossRefGoogle Scholar
  16. Ivanova N, Johannessen OM, Pedersen LT, Tonboe RT (2014) Retrieval of Arctic Sea ice parameters by satellite passive microwave sensors: a comparison of eleven sea ice concentration algorithms. IEEE Trans Geosci Remote Sens 52(11):7233–7246.  https://doi.org/10.1109/TGRS.2014.2310136 CrossRefGoogle Scholar
  17. Jahn A, Kay JE, Holland MM, Hall D (2016) How predictable is the timing of a summer ice-free Arctic? Geophys Res Lett 43:9113–9120.  https://doi.org/10.1002/2016GL070067 CrossRefGoogle Scholar
  18. Kalnay E, et al. (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471.  https://doi.org/10.1175/1520-0477(1996)077%3C0437:TNYRP%3E2.0.CO;2.CrossRefGoogle Scholar
  19. Krumpen T, Gerdes R, Haas C, Hendricks S, Herber A, Selyuzhenok V, Smedsrud LH, Spreen G (2016) Recent summer sea ice thickness surveys in Fram Strait and associated ice volume fluxes. The Cryosphere 10:523–534.  https://doi.org/10.5194/tc-10-523-2016 CrossRefGoogle Scholar
  20. Kwok R (2009) Outflow of Arctic Ocean Sea ice into the Greenland and Barents Seas: 1979–2007. J Clim 22:2438–2457.  https://doi.org/10.1175/2008JCLI2819.1 CrossRefGoogle Scholar
  21. Kwok R, Rothrock DA (1999) Variability of Fram Strait ice flux and North Atlantic Oscillation. J Geophys Res 104(C3):5177–5189.  https://doi.org/10.1029/1998JC900103 CrossRefGoogle Scholar
  22. Kwok R, Cunningham GF, Pang SS (2004) Fram Strait sea ice outflow. J Geophys Res 109:C01009.  https://doi.org/10.1029/2003JC001785 CrossRefGoogle Scholar
  23. Kwok R, Hunke EC, Maslowski W, Menemenlis D, Zhang J (2008) Variability of sea ice simulations assessed with RGPS kinematics. J Geophys Res 113:C11012.  https://doi.org/10.1029/2008JC004783 CrossRefGoogle Scholar
  24. Kwok R, Cunningham GF, Wensnahan M, Rigor I, Zwally HJ, Yi D (2009) Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J Geophys Res 114:C07005.  https://doi.org/10.1029/2009JC005312 CrossRefGoogle Scholar
  25. Kwok R, Spreen G, Pang S (2013) Arctic sea ice circulation and drift speed: decadal trends and ocean currents. J Geophys Res 118(5):2408–2425.  https://doi.org/10.1002/jgrc.20191 CrossRefGoogle Scholar
  26. Laliberté F, Howell SEL, Kushner PJ (2016) Regional variability of a projected sea ice-free Arctic during the summer months. Geophys Res Lett 43:256–263.  https://doi.org/10.1002/2015GL066855 CrossRefGoogle Scholar
  27. Langehaug HR, Geyer F, Smedsrud LH, Gao Y (2013) Arctic sea ice decline and ice export in the CMIP5 historical simulations. Ocean Model 71:114–126.  https://doi.org/10.1016/j.ocemod.2012.12.006 CrossRefGoogle Scholar
  28. Marsland SJ, Haak H, Jungclaus JH, Latif M, Röske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean model 5:91–127.  https://doi.org/10.1016/S1463-5003(02)00015-X CrossRefGoogle Scholar
  29. Maslowski W, Marble D, Walczowski W, Schauer U, Clement JL, Semtner AJ (2004) On climatological mass, heat, and salt transports through the Barents Sea and Fram Strait from a pan-Arctic coupled ice-ocean model simulation. J Geophys Res 109:C03032.  https://doi.org/10.1029/2001JC001039 CrossRefGoogle Scholar
  30. Massonnet F, Fichefet T, Goosse H, Vancoppenolle M, Mathiot P, König Beatty C (2011) On the influence of model physics on simulations of Arctic and Antarctic sea ice. The Cryosphere 5:687–699.  https://doi.org/10.5194/tc-5-687-2011 CrossRefGoogle Scholar
  31. Notz D, Stroeve J (2016) Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354:747–750.  https://doi.org/10.1126/science.aag2345 CrossRefGoogle Scholar
  32. Notz D, Haumann FA, Haak H, Jungclaus JH, Marotzke J (2013) Arctic sea-ice evolution as modeled by Max Planck Institute for Meteorology's Earth system model. J Adv Model Earth Syst 5(2):173–194CrossRefGoogle Scholar
  33. Perovich DK, Richter-Menge JA, Jones KF, Light B (2008) Sunlight, water, and ice: extreme Arctic sea ice melt during the summer of 2007. Geophys Res Lett 35:L11501.  https://doi.org/10.1029/2008GL034007 CrossRefGoogle Scholar
  34. Rahmstorf S (1994) Rapid climate transitions in a coupled ocean-atmosphere model. Nature 372:82–85.  https://doi.org/10.1038/372082a0 CrossRefGoogle Scholar
  35. Rampal P, Weiss J, Marsan D (2009) Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007. J Geophys Res 114:C05013.  https://doi.org/10.1029/2008JC005066 CrossRefGoogle Scholar
  36. Ricker R, Girard-Ardhuin F, Krumpen T, Lique C (2018) Satellite-derived sea-ice export and its impact on Arctic ice mass balance. The Cryosphere Discuss.  https://doi.org/10.5194/tc-2018-6 in reviewCrossRefGoogle Scholar
  37. Röske F (2006) A global heat and freshwater forcing dataset for ocean models. Ocean Modell 11:235–297.  https://doi.org/10.1016/j.ocemod.2004.12.005 CrossRefGoogle Scholar
  38. Rothrock DA, Percival DB, Wensnahan M (2008) The decline in Arctic sea-ice thickness: separating the spatial, annual, and interannual variability in a quarter century of submarine data. J Geophys Res 113:C05003.  https://doi.org/10.1029/2007JC004252 CrossRefGoogle Scholar
  39. Semtner AJ (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6:379–389.  https://doi.org/10.1175/1520-0485(1976)006%3C0379:AMFTTG%3E2.0.CO;2Oceanogr.CrossRefGoogle Scholar
  40. Sévellec F, Fedorov AV, Liu W (2017) Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation. Nat Clim Chang 7:604–610.  https://doi.org/10.1038/nclimate3353 CrossRefGoogle Scholar
  41. Smedsrud LH, Sirevaag A, Kloster K, Sorteberg A, Sandven S (2011) Recent wind driven high sea ice area export in the Fram Strait contributes to Arctic sea ice decline. The Cryosphere 5:821–829.  https://doi.org/10.5194/tc-5-821-2011 CrossRefGoogle Scholar
  42. Smedsrud LH, Halvorsen MH, Stroeve JC, Zhang R, Kloster K (2017) Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years. The Cryosphere 11:65–79.  https://doi.org/10.5194/tc-11-65-2017 CrossRefGoogle Scholar
  43. Spreen G, Kern S, Stammer D, Hansen E (2009) Fram Strait sea ice volume export estimated between 2003 and 2008 from satellite data. Geophys Res Lett 36:L19502.  https://doi.org/10.1029/2009GL039591 CrossRefGoogle Scholar
  44. Spreen G, Kwok R, Menemenlis D (2011) Trends in Arctic sea ice drift and role of wind forcing: 1992–2009. Geophys Res Lett 38:L19501.  https://doi.org/10.1029/2011GL048970 CrossRefGoogle Scholar
  45. Spreen G, Kwok R, Menemenlis D, Nguyen AT (2017) Sea ice deformation in a coupled ocean-sea ice model and in satellite remote sensing data. The Cryosphere 11:1553–1573.  https://doi.org/10.5194/tc-11-1553-2017 CrossRefGoogle Scholar
  46. Stroeve J, Kattsov CV, Barrett A, Serreze M, Pavlova T, Holland M, Meier WN (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39:L16502.  https://doi.org/10.1029/2012GL052676 CrossRefGoogle Scholar
  47. Sumata H, Lavergne T, Girard-Ardhuin F, Kimura N, Tschundi MA, Kauker F, Karcher M, Gerdes R (2014) An intercomparison of Arctic ice drift products to deduce uncertainty estimates. J Geophys Res Oceans 119(8):4887–4921.  https://doi.org/10.1002/2013JC009724 CrossRefGoogle Scholar
  48. Sumata H, Gerdes R, Kauker F, Karcher M (2015a) Empirical error functions for monthly mean Arctic sea-ice drift. J Geophys Res Oceans 120:7450–7475.  https://doi.org/10.1002/2015JC011151 CrossRefGoogle Scholar
  49. Sumata H, Kwok R, Gerdes R, Kauker F, Karcher M (2015b) Uncertainty of Arctic summer ice drift assessed by high-resolution SAR data. J Geophys Res Oceans 120:5285–5301.  https://doi.org/10.1002/2015JC010810 CrossRefGoogle Scholar
  50. Szanyi S, Lukovich JV, Barber DG, Haller G (2016) Persistent artifacts in the NSIDC ice motion data set and their implications for analysis. Geophys Res Lett 43(20):10800–10807CrossRefGoogle Scholar
  51. Tschudi M, Fowler C, Maslanik J, Stewart JS, Meier W (2016) Polar pathfinder daily 25 km EASE-grid sea ice motion vectors, Version 3. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center.  https://doi.org/10.5067/O57VAIT2AYYY
  52. Vinje T, Nordlund N, Kvambekk Å (1998) Monitoring ice thickness in Fram Strait. J Geophys Res 103(C5):10437–10449.  https://doi.org/10.1029/97JC03360 CrossRefGoogle Scholar
  53. Von Storch J, Haak H, Hertwig E, Fast I (2016) Vertical heat and salt fluxes due to resolved and parameterized meso-scale Eddies. Ocean Model 108:1–19.  https://doi.org/10.1016/j.ocemod.2016.10.001 CrossRefGoogle Scholar
  54. Wekerle C, Wang Q, von Appen WJ, Danilov S, Schourup-Kristensen V, Jung T (2017) Eddy-resolving simulation of the Atlantic Water circulation in the Fram Strait with focus on the seasonal cycle. J Geophys Res: Oceans 122:8385–8405.  https://doi.org/10.1002/2017JC012974 CrossRefGoogle Scholar
  55. Widell K, Østerhus S, Gammelsrød T (2003) Sea ice velocity in the Fram Strait monitored by moored instruments. Geophys Res Lett.  https://doi.org/10.1029/2003GL018119 CrossRefGoogle Scholar
  56. Williams J, Tremblay B, Newton R: Dynamic preconditioning of the september sea-ice extent minimum. J Clim 29:5879–5891.  https://doi.org/10.1175/JCLI-D-15-0515.1

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Alfred Wegener Institute for Polar and Marine research (AWI)BremerhavenGermany
  2. 2.Jacobs UniversityBremenGermany
  3. 3.Geophysical Institute and Bjerknes Centre for Climate ResearchUniversity of BergenBergenNorway
  4. 4.University Centre in SvalbardLongyearbyenSvalbard and Jan Mayen

Personalised recommendations